Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_3_a1, author = {A. V. Budyansky and V. G. Tsybulin}, title = {Modeling of~competition between populations with~multi-taxis}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {14--25}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a1/} }
TY - JOUR AU - A. V. Budyansky AU - V. G. Tsybulin TI - Modeling of~competition between populations with~multi-taxis JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 14 EP - 25 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a1/ LA - ru ID - SJIM_2023_26_3_a1 ER -
A. V. Budyansky; V. G. Tsybulin. Modeling of~competition between populations with~multi-taxis. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 14-25. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a1/
[1] Murray J.D., Mathematical Biology II. Spatial Models and Biomedical Applications, Springer-Verl, N. Y., 2003 | MR
[2] Cosner C., Cantrell R., Spatial Ecology Via Reaction–Diffusion Equations, John Wiley and Sons, Chichester, 2003 | MR | Zbl
[3] Qin W., Zhou P., “A rewiew on the dynamics of two species competitve ODE and parabolic systems”, J. Appl. Anal. Comput., 12:5 (2022), 2075–2109 | DOI | MR
[4] Tyutyunov Y.V., Sen D., Titova L.I., Banerjee M., “Predator overcomes the Allee effect due to indirect prey-taxis”, Ecological Complexity, 39 (2019), 100772 | DOI
[5] Govorukhin V.N., Zagrebneva A.D., “Population waves and their bifurcation in a model «active predator - passive prey»”, Comput. Research and Modeling, 12:4 (2020), 831–843 | DOI
[6] Frisman E.Ya., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P., “The key approaches and review of current researches on dynamics of structured and interacting populations”, Comput. Research and Modeling, 11:1 (2019), 119–151 | DOI | MR
[7] Arumugam R., Sarkar S., Banerjee T., Sinha S., Dutta P.S., “Dynamic environment-induced multistability and critical transition in a metacommunity ecosystem”, Phys. Rev. E, 99:3 (2019), 032216 | DOI
[8] Zhou P., Tang D., Xiao D., “On Lotka-Volterra competitive parabolic systems: Exclusion, coexistence and bistability”, J. Differ. Equ, 282 (2021), 596–625 | DOI | MR | Zbl
[9] Vasilyeva O., “Opulation dynamics in river networks: analysis of steady states”, J. Math. Biology, 79 (2019), 63–100 | DOI | MR | Zbl
[10] Kovaleva E.S., Tsybulin V.G., Frischmuth K., “A family of stationary modes in a population dynamics model”, Sib. Zhurn. Indust. Mat., 12:1 (2009), 98–107 (in Russian) | MR
[11] Yudovich V.I., “Bifurcations under perturbations violating cosymmetry”, Doklady Physics, 49 (2004), 522–526 | DOI | MR
[12] Budyansky A.V., Tsybulin V.G., “Impact of directed migration on formation of spatial structures of populations”, Biophysics, 60 (2015), 622–631 | DOI
[13] Budyansky A.V., Frischmuth K., Tsybulin V.G., “Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat”, Discrete Contin. Dyn. Systems. B, 24:2 (2019), 547–561 | DOI | MR | Zbl
[14] Frischmuth K., Budyansky A.V., Tsybulin V.G., “Modeling of invasion on a heterogeneous habitat: taxis and multistability”, Appl. Math. Comput., 410 (2021), 126456 | DOI | MR | Zbl
[15] Budyansky A.V., Tsybulin V.G., “Modeling the Dynamics of Populations in a Heterogeneous Environment: Invasion and Multistability”, Biophysics, 67:1 (2022), 174–182 | DOI
[16] Budyansky A.V., Tsybulin V.G., “Modeling of Multifactor Taxis in a Predator-Prey System”, Biophysics, 64:2 (2019), 343–349 | DOI