Modeling of~competition between populations with~multi-taxis
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 14-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a mathematical model of competition between two populations, which is described by a system of nonlinear differential equations of reaction-diffusion-advection. The taxis is introduced to model the heterogeneity of the total resource and the non-uniform distribution of both types. We analyze the role of taxis in the area occupancy. The maps of migration parameters corresponding to various variants of competitive exclusion and coexistence of species are calculated. Using the theory of cosymmetry, we find parametric relations under which multistability arises. In a computational experiment, population scenarios with a violation of cosymmetry were studied.
Keywords: population dynamics, competition, multistability, cosymmetry.
Mots-clés : taxis, equations of reaction-diffusion-advection
@article{SJIM_2023_26_3_a1,
     author = {A. V. Budyansky and V. G. Tsybulin},
     title = {Modeling of~competition between populations with~multi-taxis},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {14--25},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a1/}
}
TY  - JOUR
AU  - A. V. Budyansky
AU  - V. G. Tsybulin
TI  - Modeling of~competition between populations with~multi-taxis
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 14
EP  - 25
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a1/
LA  - ru
ID  - SJIM_2023_26_3_a1
ER  - 
%0 Journal Article
%A A. V. Budyansky
%A V. G. Tsybulin
%T Modeling of~competition between populations with~multi-taxis
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 14-25
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a1/
%G ru
%F SJIM_2023_26_3_a1
A. V. Budyansky; V. G. Tsybulin. Modeling of~competition between populations with~multi-taxis. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 14-25. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a1/

[1] Murray J.D., Mathematical Biology II. Spatial Models and Biomedical Applications, Springer-Verl, N. Y., 2003 | MR

[2] Cosner C., Cantrell R., Spatial Ecology Via Reaction–Diffusion Equations, John Wiley and Sons, Chichester, 2003 | MR | Zbl

[3] Qin W., Zhou P., “A rewiew on the dynamics of two species competitve ODE and parabolic systems”, J. Appl. Anal. Comput., 12:5 (2022), 2075–2109 | DOI | MR

[4] Tyutyunov Y.V., Sen D., Titova L.I., Banerjee M., “Predator overcomes the Allee effect due to indirect prey-taxis”, Ecological Complexity, 39 (2019), 100772 | DOI

[5] Govorukhin V.N., Zagrebneva A.D., “Population waves and their bifurcation in a model «active predator - passive prey»”, Comput. Research and Modeling, 12:4 (2020), 831–843 | DOI

[6] Frisman E.Ya., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P., “The key approaches and review of current researches on dynamics of structured and interacting populations”, Comput. Research and Modeling, 11:1 (2019), 119–151 | DOI | MR

[7] Arumugam R., Sarkar S., Banerjee T., Sinha S., Dutta P.S., “Dynamic environment-induced multistability and critical transition in a metacommunity ecosystem”, Phys. Rev. E, 99:3 (2019), 032216 | DOI

[8] Zhou P., Tang D., Xiao D., “On Lotka-Volterra competitive parabolic systems: Exclusion, coexistence and bistability”, J. Differ. Equ, 282 (2021), 596–625 | DOI | MR | Zbl

[9] Vasilyeva O., “Opulation dynamics in river networks: analysis of steady states”, J. Math. Biology, 79 (2019), 63–100 | DOI | MR | Zbl

[10] Kovaleva E.S., Tsybulin V.G., Frischmuth K., “A family of stationary modes in a population dynamics model”, Sib. Zhurn. Indust. Mat., 12:1 (2009), 98–107 (in Russian) | MR

[11] Yudovich V.I., “Bifurcations under perturbations violating cosymmetry”, Doklady Physics, 49 (2004), 522–526 | DOI | MR

[12] Budyansky A.V., Tsybulin V.G., “Impact of directed migration on formation of spatial structures of populations”, Biophysics, 60 (2015), 622–631 | DOI

[13] Budyansky A.V., Frischmuth K., Tsybulin V.G., “Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat”, Discrete Contin. Dyn. Systems. B, 24:2 (2019), 547–561 | DOI | MR | Zbl

[14] Frischmuth K., Budyansky A.V., Tsybulin V.G., “Modeling of invasion on a heterogeneous habitat: taxis and multistability”, Appl. Math. Comput., 410 (2021), 126456 | DOI | MR | Zbl

[15] Budyansky A.V., Tsybulin V.G., “Modeling the Dynamics of Populations in a Heterogeneous Environment: Invasion and Multistability”, Biophysics, 67:1 (2022), 174–182 | DOI

[16] Budyansky A.V., Tsybulin V.G., “Modeling of Multifactor Taxis in a Predator-Prey System”, Biophysics, 64:2 (2019), 343–349 | DOI