The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 113-129

Voir la notice de l'article provenant de la source Math-Net.Ru

An one-dimensional inverse problem of determining the coefficient for power gradient nonlinearity in a semilinear wave equation is considered. The existence and uniqueness theorems of the solution of a direct problem are proved. For the inverse problem the local existence theorem is stated and a stability estimate of the solution is found.
Keywords: semilinear wave equation, direct problem, inverse problem, power gradient nonlinearity, stability, uniqueness. .
Mots-clés : existence
@article{SJIM_2023_26_2_a9,
     author = {V. G. Romanov and T.V. Bugueva},
     title = {The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {113--129},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a9/}
}
TY  - JOUR
AU  - V. G. Romanov
AU  - T.V. Bugueva
TI  - The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 113
EP  - 129
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a9/
LA  - ru
ID  - SJIM_2023_26_2_a9
ER  - 
%0 Journal Article
%A V. G. Romanov
%A T.V. Bugueva
%T The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 113-129
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a9/
%G ru
%F SJIM_2023_26_2_a9
V. G. Romanov; T.V. Bugueva. The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 113-129. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a9/