The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 113-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

An one-dimensional inverse problem of determining the coefficient for power gradient nonlinearity in a semilinear wave equation is considered. The existence and uniqueness theorems of the solution of a direct problem are proved. For the inverse problem the local existence theorem is stated and a stability estimate of the solution is found.
Keywords: semilinear wave equation, direct problem, inverse problem, power gradient nonlinearity, stability, uniqueness. .
Mots-clés : existence
@article{SJIM_2023_26_2_a9,
     author = {V. G. Romanov and T.V. Bugueva},
     title = {The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {113--129},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a9/}
}
TY  - JOUR
AU  - V. G. Romanov
AU  - T.V. Bugueva
TI  - The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 113
EP  - 129
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a9/
LA  - ru
ID  - SJIM_2023_26_2_a9
ER  - 
%0 Journal Article
%A V. G. Romanov
%A T.V. Bugueva
%T The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 113-129
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a9/
%G ru
%F SJIM_2023_26_2_a9
V. G. Romanov; T.V. Bugueva. The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 113-129. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a9/

[1] Y. M. Assylbekov, T. Zhou, “Direct and inverse problems for the nonlinear time-harmonic Maxwell equations in Kerr-type media”, J. Spectral Theory, 2017, arXiv: 1709.07767 | MR

[2] Y. Kurylev, M. Lassas, G. Uhlmann, “Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations”, Invent. Math., 212 (2018), 781–857 ; (20 Sep 2017), arXiv: 1405.3386v4 [math.DG] | DOI | MR | Zbl | Zbl

[3] M. Lassas, G. Uhlmann, Y. Wang, “Inverse problems for semilinear wave equations on Lorentzian manifolds”, Commun. Math. Phys., 360 (2018), 555–609 ; (20 Jun 2016), arXiv: 1606.06261v1 [math.AP] | DOI | MR | Zbl

[4] M. Lassas, “Inverse problems for linear and non-linear hyperbolic equations”, Proc. Internat. Congress Math., v. 3, 2018, 3739–3760 | MR

[5] Y. Wang, T. Zhou, “Inverse problems for quadratic derivative nonlinear wave equations”, Commun. Partial Differ. Equ, 44:11 (2019), 1140–1158 | DOI | MR | Zbl

[6] P. Hintz, G. Uhlmann, “Reconstruction of Lorentzian manifolds from boundary light observation sets”, Internat. Math. Res. Notices, 22 (2019), 6949–6987 ; (27 May 2020), arXiv: 1705.01215v2 [math.DG] | DOI | MR | Zbl | Zbl

[7] A. S. Barreto, “Interactions of semilinear progressing waves in two or more space dimensions”, Inverse Probl. Imaging, 14:6 (2020), 1057–1105 ; (29 Jan 2020), arXiv: 2001.11061v1 [math.AP] | DOI | MR | Zbl

[8] P. Hintz, G. Uhlmann, J. Zhai, “An inverse boundary value problem for a semilinear wave equation on Lorentzian manifolds”, Internat. Math. Res. Notices, 2021, arXiv: 2005.10447 | MR

[9] G. Uhlmann, J. Zhai, “On an inverse boundary value problem for a nonlinear elastic wave equation”, J. Math. Pures Appl, 153 (2021), 114–136 | DOI | MR | Zbl

[10] A. S. Barreto, P. Stefanov, “Recovery of a general nonlinearity in the semilinear wave equation”, Analysis of PDEs, 2021; 18 Jul 2021, arXiv: 2107.08513v1 [math.AP]

[11] P. Hintz, G. Uhlmann, J. Zhai, “The Dirichlet-to-Neumann map for a semilinear wave equation on Lorentzian manifolds”, Analysis of PDEs, 2021 ; 15 Mar 2021, arXiv: 2103.08110v1 [math.AP] | MR

[12] A. S. Barreto, P. Stefanov, “Recovery of a cubic non-linearity in the wave equation in the weakly non-linear regime”, Commun. Math. Phys, 392 (2022), 25–53 | DOI | MR | Zbl

[13] V. G. Romanov, T. V. Bugueva, “Obratnaya zadacha dlya nelineinogo volnovogo uravneniya”, Sib. zhurn. industr. matematiki, 25:2 (2022), 83–100

[14] V. G. Romanov, T. V. Bugueva, “Zadacha ob opredelenii koeffitsienta pri nelineinom chlene kvazilineinogo volnovogo uravneniya”, Sib. zhurn. industr. matematiki, 25:3 (2022), 154–169 | MR

[15] V. G. Romanov, “Obratnaya zadacha dlya polulineinogo volnovogo uravneniya”, Dokl. AN. Matematika, informatika, protsessy upravleniya, 504:1 (2022), 36–41 | Zbl

[16] V. G. Romanov, T. V. Bugueva, “Obratnaya zadacha dlya volnovogo uravneniya s polinomialnoi nelinei nostyu”, Sib. zhurn. industr. matematiki, 26:1 (2023), 142–14 | MR