Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_2_a9, author = {V. G. Romanov and T.V. Bugueva}, title = {The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {113--129}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a9/} }
TY - JOUR AU - V. G. Romanov AU - T.V. Bugueva TI - The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 113 EP - 129 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a9/ LA - ru ID - SJIM_2023_26_2_a9 ER -
%0 Journal Article %A V. G. Romanov %A T.V. Bugueva %T The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 113-129 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a9/ %G ru %F SJIM_2023_26_2_a9
V. G. Romanov; T.V. Bugueva. The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 113-129. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a9/
[1] Y. M. Assylbekov, T. Zhou, “Direct and inverse problems for the nonlinear time-harmonic Maxwell equations in Kerr-type media”, J. Spectral Theory, 2017, arXiv: 1709.07767 | MR
[2] Y. Kurylev, M. Lassas, G. Uhlmann, “Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations”, Invent. Math., 212 (2018), 781–857 ; (20 Sep 2017), arXiv: 1405.3386v4 [math.DG] | DOI | MR | Zbl | Zbl
[3] M. Lassas, G. Uhlmann, Y. Wang, “Inverse problems for semilinear wave equations on Lorentzian manifolds”, Commun. Math. Phys., 360 (2018), 555–609 ; (20 Jun 2016), arXiv: 1606.06261v1 [math.AP] | DOI | MR | Zbl
[4] M. Lassas, “Inverse problems for linear and non-linear hyperbolic equations”, Proc. Internat. Congress Math., v. 3, 2018, 3739–3760 | MR
[5] Y. Wang, T. Zhou, “Inverse problems for quadratic derivative nonlinear wave equations”, Commun. Partial Differ. Equ, 44:11 (2019), 1140–1158 | DOI | MR | Zbl
[6] P. Hintz, G. Uhlmann, “Reconstruction of Lorentzian manifolds from boundary light observation sets”, Internat. Math. Res. Notices, 22 (2019), 6949–6987 ; (27 May 2020), arXiv: 1705.01215v2 [math.DG] | DOI | MR | Zbl | Zbl
[7] A. S. Barreto, “Interactions of semilinear progressing waves in two or more space dimensions”, Inverse Probl. Imaging, 14:6 (2020), 1057–1105 ; (29 Jan 2020), arXiv: 2001.11061v1 [math.AP] | DOI | MR | Zbl
[8] P. Hintz, G. Uhlmann, J. Zhai, “An inverse boundary value problem for a semilinear wave equation on Lorentzian manifolds”, Internat. Math. Res. Notices, 2021, arXiv: 2005.10447 | MR
[9] G. Uhlmann, J. Zhai, “On an inverse boundary value problem for a nonlinear elastic wave equation”, J. Math. Pures Appl, 153 (2021), 114–136 | DOI | MR | Zbl
[10] A. S. Barreto, P. Stefanov, “Recovery of a general nonlinearity in the semilinear wave equation”, Analysis of PDEs, 2021; 18 Jul 2021, arXiv: 2107.08513v1 [math.AP]
[11] P. Hintz, G. Uhlmann, J. Zhai, “The Dirichlet-to-Neumann map for a semilinear wave equation on Lorentzian manifolds”, Analysis of PDEs, 2021 ; 15 Mar 2021, arXiv: 2103.08110v1 [math.AP] | MR
[12] A. S. Barreto, P. Stefanov, “Recovery of a cubic non-linearity in the wave equation in the weakly non-linear regime”, Commun. Math. Phys, 392 (2022), 25–53 | DOI | MR | Zbl
[13] V. G. Romanov, T. V. Bugueva, “Obratnaya zadacha dlya nelineinogo volnovogo uravneniya”, Sib. zhurn. industr. matematiki, 25:2 (2022), 83–100
[14] V. G. Romanov, T. V. Bugueva, “Zadacha ob opredelenii koeffitsienta pri nelineinom chlene kvazilineinogo volnovogo uravneniya”, Sib. zhurn. industr. matematiki, 25:3 (2022), 154–169 | MR
[15] V. G. Romanov, “Obratnaya zadacha dlya polulineinogo volnovogo uravneniya”, Dokl. AN. Matematika, informatika, protsessy upravleniya, 504:1 (2022), 36–41 | Zbl
[16] V. G. Romanov, T. V. Bugueva, “Obratnaya zadacha dlya volnovogo uravneniya s polinomialnoi nelinei nostyu”, Sib. zhurn. industr. matematiki, 26:1 (2023), 142–14 | MR