Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_2_a5, author = {U. D. Durdiev and Z. R. Bozorov}, title = {Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {60--73}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a5/} }
TY - JOUR AU - U. D. Durdiev AU - Z. R. Bozorov TI - Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 60 EP - 73 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a5/ LA - ru ID - SJIM_2023_26_2_a5 ER -
%0 Journal Article %A U. D. Durdiev %A Z. R. Bozorov %T Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 60-73 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a5/ %G ru %F SJIM_2023_26_2_a5
U. D. Durdiev; Z. R. Bozorov. Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 60-73. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a5/
[1] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR
[2] A. N. Krylov, Vibratsiya sudov, ONTI NKTP SSSR, M.–L., 1936
[3] B. V. Gusev, V. V. Saurin, “O kolebaniyakh neodnorodnykh balok”, Inzh. vestn. Dona, 2017 http://ivdon.ru/ru/magazine/archive/n3y2017/4312
[4] K. B. Sabitov, “A remark on the theory of initial-boundary value problems for the equation of rods and beams”, Differ. Equ, 53:1 (2017), 89–100 | DOI | MR | Zbl
[5] K. B. Sabitov, “Initial-boundary value problems for the beam vibration equation with allowance for its rotational motion under bending”, Differ. Equ, 57:3 (2021), 342–352 | DOI | MR | Zbl
[6] K. B. Sabitov, O. V. Fadeeva, “Nachalno-granichnaya zadacha dlya uravneniya vynuzhdennykh kolebanii konsolnoi balki”, Vestn. Samar. gos. un-ta. Ser. Fiz. mat. nauki, 25:1 (2021), 51–66 | DOI | Zbl
[7] O. Baysal, A. Hasanov, “Solvability of the clamped Euler-Bernoulli beam equation”, Appl. Math. Lett., 93 (2019), 85–90 | DOI | MR | Zbl
[8] U. D. Durdiev, “Inverse problem of determining an unknown coefficient in the beam vibration equation”, Differ. Equ., 58:1 (2022), 37–44 | DOI | MR | Zbl
[9] G. Tan, J. Shan, Ch. Wu, W. Wang, “Direct and inverse problems on free vibration of cracked multiple I-section beam with different boundary conditions”, Adv. Mech. Engrg, 9:11 (2017), 1–17 | DOI
[10] S. Moaveni, R. Hyde, “Reconstruction of the area-moment-of-inertia of a beam using a shifting load and the end-slope data”, Inverse Probl. Sci. Engrg, 24:6 (2016), 990–1010 | DOI | MR | Zbl
[11] J. D. Chang, B. Z. Guo, “Identification of variable spacial coefficients for a beam equation from boundary measurements”, Automatica, 43 (2007), 732–737 | DOI | MR | Zbl
[12] Ch. H. Huang, Ch. Ch. Shih, “An inverse problem in estimating simultaneously the time-dependent applied force and moment of an Euler-Bernoulli beam”, CMES, 21:3 (2007), 239–254 | MR | Zbl
[13] A. Maciag, A. Pawinska, “Solution of the direct and inverse problems for beam”, Comput. Appl. Math., 35 (2016), 187–201 | DOI | MR | Zbl
[14] A. Maciag, A. Pawinska, “Solving direct and inverse problems of plate vibration by using the Trefftz functions”, J. Theor. Appl. Mech, 51:3 (2013), 543–552
[15] A. L. Karchevskii, “Analiticheskie resheniya differentsialnogo uravneniya poperechnykh kolebanii kusochno-odnorodnoi balki v chastotnoi oblasti dlya kraevykh uslovii lyubogo vida”, Sib. zhurn. industr. matematiki, 23:4 (2020), 48–68 | DOI | Zbl
[16] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR
[17] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii odnomernogo yadra uravneniya elektrovyazkouprugosti”, Sib. mat. zhurn, 58:3 (2017), 553–572 | DOI | MR | Zbl
[18] D. K. Durdiev, A. A. Rakhmonov, “Zadacha ob opredelenii dvumernogo yadra v sisteme integrodifferentsialnykh uravnenii vyazkouprugoi poristoi sredy”, Sib. zhurn. industr. matematiki, 23:2 (2020), 63–80 | DOI | Zbl
[19] U. D. Durdiev, “A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation”, Euras. J. Math. Comput. Appl, 7:2 (2019), 4–19 | DOI
[20] U. D. Durdiev, Zh. D. Totieva, “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Meth. Appl. Sci, 42:18 (2019), 7440–7451 | DOI | MR | Zbl
[21] D. K. Durdiev, Zh. Zh. Zhumaev, “Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor”, Math. Meth. Appl. Sci, 45:14 (2022), 8374–8388 | DOI | MR
[22] D. K. Durdiev, Zh. Zh. Zhumaev, “One-dimensional inverse problems of finding the kernel of integrodifferential heat equation in a bounded domain”, Ukr. Math. J., 73:11 (2022), 1723–1740 | DOI | MR | Zbl
[23] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matematiki, 4:3 (2001), 259–268 | MR | Zbl
[24] A. L. Karchevskii, “Opredelenie vozmozhnosti gornogo udara v ugolnom plaste”, Sib. zhurn. industr. matematiki, 20:4 (2017), 35–43 | DOI | Zbl
[25] U. D. Durdiev, “Chislennoe opredelenie zavisimosti dielektricheskoi pronitsaemosti sloistoi sredy ot vremennoi chastoty”, Sib. elektron. mat. izv., 17 (2020), 179–189 | DOI | MR | Zbl
[26] Ya. T. Megraliev, E. I. Azizbayov, “A time-nonlocal inverse problem for a hyperbolic equation with an integral overdetermination condition”, Electron. J. Qual. Theory Differ. Equ, 2021, no. 28, 1–12 | DOI | MR
[27] B. Pachpette, Integral and Finite Difference Inequalities and Applications, North-Holland Mathematics Studies, Elsevier, 2006 | MR
[28] K. I. Khudaverdiev, A. A. Veliev, Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa psevdogiperbolicheskikh uravnenii tretego poryadka s nelineinoi operatornoi pravoi chastyu, Chashyogly, Baku, 2010
[29] I. Tekin, Y. T. Mehraliyev, M. I. Ismailov, “Existence and uniqueness of an inverse problem for nonlinear Klein-Gordon equation”, Math. Meth. Appl. Sci., 42:10 (2019), 3739–3753 | DOI | MR | Zbl