Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 60-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the study of the direct problem for the oscillation of a homogeneous beam of finite length with non-local time conditions. Necessary and sufficient conditions for the existence of a solution to the direct problem are obtained. For the direct problem, we study the inverse problem of determining the time-dependent coefficient at the lowest derivative. Using eigenvalues and eigenfunctions, the problem is reduced to a system of integral equations. With the help of the Banach principle, the existence and uniqueness of the solution of inverse problems are shown.
Keywords: inverse problem, redefinition condition, eigenfunctions, uniqueness.
Mots-clés : non-local conditions, beam oscillations, existence
@article{SJIM_2023_26_2_a5,
     author = {U. D. Durdiev and Z. R. Bozorov},
     title = {Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {60--73},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a5/}
}
TY  - JOUR
AU  - U. D. Durdiev
AU  - Z. R. Bozorov
TI  - Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 60
EP  - 73
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a5/
LA  - ru
ID  - SJIM_2023_26_2_a5
ER  - 
%0 Journal Article
%A U. D. Durdiev
%A Z. R. Bozorov
%T Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 60-73
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a5/
%G ru
%F SJIM_2023_26_2_a5
U. D. Durdiev; Z. R. Bozorov. Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 60-73. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a5/

[1] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR

[2] A. N. Krylov, Vibratsiya sudov, ONTI NKTP SSSR, M.–L., 1936

[3] B. V. Gusev, V. V. Saurin, “O kolebaniyakh neodnorodnykh balok”, Inzh. vestn. Dona, 2017 http://ivdon.ru/ru/magazine/archive/n3y2017/4312

[4] K. B. Sabitov, “A remark on the theory of initial-boundary value problems for the equation of rods and beams”, Differ. Equ, 53:1 (2017), 89–100 | DOI | MR | Zbl

[5] K. B. Sabitov, “Initial-boundary value problems for the beam vibration equation with allowance for its rotational motion under bending”, Differ. Equ, 57:3 (2021), 342–352 | DOI | MR | Zbl

[6] K. B. Sabitov, O. V. Fadeeva, “Nachalno-granichnaya zadacha dlya uravneniya vynuzhdennykh kolebanii konsolnoi balki”, Vestn. Samar. gos. un-ta. Ser. Fiz. mat. nauki, 25:1 (2021), 51–66 | DOI | Zbl

[7] O. Baysal, A. Hasanov, “Solvability of the clamped Euler-Bernoulli beam equation”, Appl. Math. Lett., 93 (2019), 85–90 | DOI | MR | Zbl

[8] U. D. Durdiev, “Inverse problem of determining an unknown coefficient in the beam vibration equation”, Differ. Equ., 58:1 (2022), 37–44 | DOI | MR | Zbl

[9] G. Tan, J. Shan, Ch. Wu, W. Wang, “Direct and inverse problems on free vibration of cracked multiple I-section beam with different boundary conditions”, Adv. Mech. Engrg, 9:11 (2017), 1–17 | DOI

[10] S. Moaveni, R. Hyde, “Reconstruction of the area-moment-of-inertia of a beam using a shifting load and the end-slope data”, Inverse Probl. Sci. Engrg, 24:6 (2016), 990–1010 | DOI | MR | Zbl

[11] J. D. Chang, B. Z. Guo, “Identification of variable spacial coefficients for a beam equation from boundary measurements”, Automatica, 43 (2007), 732–737 | DOI | MR | Zbl

[12] Ch. H. Huang, Ch. Ch. Shih, “An inverse problem in estimating simultaneously the time-dependent applied force and moment of an Euler-Bernoulli beam”, CMES, 21:3 (2007), 239–254 | MR | Zbl

[13] A. Maciag, A. Pawinska, “Solution of the direct and inverse problems for beam”, Comput. Appl. Math., 35 (2016), 187–201 | DOI | MR | Zbl

[14] A. Maciag, A. Pawinska, “Solving direct and inverse problems of plate vibration by using the Trefftz functions”, J. Theor. Appl. Mech, 51:3 (2013), 543–552

[15] A. L. Karchevskii, “Analiticheskie resheniya differentsialnogo uravneniya poperechnykh kolebanii kusochno-odnorodnoi balki v chastotnoi oblasti dlya kraevykh uslovii lyubogo vida”, Sib. zhurn. industr. matematiki, 23:4 (2020), 48–68 | DOI | Zbl

[16] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[17] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii odnomernogo yadra uravneniya elektrovyazkouprugosti”, Sib. mat. zhurn, 58:3 (2017), 553–572 | DOI | MR | Zbl

[18] D. K. Durdiev, A. A. Rakhmonov, “Zadacha ob opredelenii dvumernogo yadra v sisteme integrodifferentsialnykh uravnenii vyazkouprugoi poristoi sredy”, Sib. zhurn. industr. matematiki, 23:2 (2020), 63–80 | DOI | Zbl

[19] U. D. Durdiev, “A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation”, Euras. J. Math. Comput. Appl, 7:2 (2019), 4–19 | DOI

[20] U. D. Durdiev, Zh. D. Totieva, “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Meth. Appl. Sci, 42:18 (2019), 7440–7451 | DOI | MR | Zbl

[21] D. K. Durdiev, Zh. Zh. Zhumaev, “Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor”, Math. Meth. Appl. Sci, 45:14 (2022), 8374–8388 | DOI | MR

[22] D. K. Durdiev, Zh. Zh. Zhumaev, “One-dimensional inverse problems of finding the kernel of integrodifferential heat equation in a bounded domain”, Ukr. Math. J., 73:11 (2022), 1723–1740 | DOI | MR | Zbl

[23] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matematiki, 4:3 (2001), 259–268 | MR | Zbl

[24] A. L. Karchevskii, “Opredelenie vozmozhnosti gornogo udara v ugolnom plaste”, Sib. zhurn. industr. matematiki, 20:4 (2017), 35–43 | DOI | Zbl

[25] U. D. Durdiev, “Chislennoe opredelenie zavisimosti dielektricheskoi pronitsaemosti sloistoi sredy ot vremennoi chastoty”, Sib. elektron. mat. izv., 17 (2020), 179–189 | DOI | MR | Zbl

[26] Ya. T. Megraliev, E. I. Azizbayov, “A time-nonlocal inverse problem for a hyperbolic equation with an integral overdetermination condition”, Electron. J. Qual. Theory Differ. Equ, 2021, no. 28, 1–12 | DOI | MR

[27] B. Pachpette, Integral and Finite Difference Inequalities and Applications, North-Holland Mathematics Studies, Elsevier, 2006 | MR

[28] K. I. Khudaverdiev, A. A. Veliev, Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa psevdogiperbolicheskikh uravnenii tretego poryadka s nelineinoi operatornoi pravoi chastyu, Chashyogly, Baku, 2010

[29] I. Tekin, Y. T. Mehraliyev, M. I. Ismailov, “Existence and uniqueness of an inverse problem for nonlinear Klein-Gordon equation”, Math. Meth. Appl. Sci., 42:10 (2019), 3739–3753 | DOI | MR | Zbl