Inverse problem of pure beam bending in creep conditions
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 37-52

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithm was proposed for solving the inverse problem of forming structural elements under creep conditions using the Nelder-Mead algorithm. The initial task of finding the forces that must be applied to obtain the required curvature of the part is reduced to a sequence of auxiliary direct problems of modeling the stress-strain state of pure bending of rectangular beams. This model, which takes into account the difference in the properties of the material in tension and compression, as well as the presence of accumulated damage in the material during creep, was verified by numerical methods and implemented in finite element program MSC Marc.
Keywords: rectangular beam, inverse problem, bending, creep, damage parameter, resistance to tension and compression.
Mots-clés : fracture
@article{SJIM_2023_26_2_a3,
     author = {S. V. Boyko and A. Yu. Larichkin},
     title = {Inverse problem of pure beam bending in creep conditions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {37--52},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a3/}
}
TY  - JOUR
AU  - S. V. Boyko
AU  - A. Yu. Larichkin
TI  - Inverse problem of pure beam bending in creep conditions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 37
EP  - 52
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a3/
LA  - ru
ID  - SJIM_2023_26_2_a3
ER  - 
%0 Journal Article
%A S. V. Boyko
%A A. Yu. Larichkin
%T Inverse problem of pure beam bending in creep conditions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 37-52
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a3/
%G ru
%F SJIM_2023_26_2_a3
S. V. Boyko; A. Yu. Larichkin. Inverse problem of pure beam bending in creep conditions. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 37-52. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a3/