Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_2_a2, author = {T. N. Bobyleva and A. S. Shamaev and O. V. Yantsen}, title = {Mathematical model of the wastewater treatment process using biofilm}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {25--36}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a2/} }
TY - JOUR AU - T. N. Bobyleva AU - A. S. Shamaev AU - O. V. Yantsen TI - Mathematical model of the wastewater treatment process using biofilm JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 25 EP - 36 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a2/ LA - ru ID - SJIM_2023_26_2_a2 ER -
%0 Journal Article %A T. N. Bobyleva %A A. S. Shamaev %A O. V. Yantsen %T Mathematical model of the wastewater treatment process using biofilm %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 25-36 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a2/ %G ru %F SJIM_2023_26_2_a2
T. N. Bobyleva; A. S. Shamaev; O. V. Yantsen. Mathematical model of the wastewater treatment process using biofilm. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 25-36. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a2/
[1] Khentse M., Armoes P., Lya-Kur-Yansen I., Arvan E., Ochistka stochnykh vod, Mir, M., 2006
[2] Bitton G., Wastewater Microbiology, Wiley-Interscience, N.Y., 2005
[3] B. DTAcunto, L. Frunzo, M. R. Mattei, “Continuum approach to mathematical modelling of multispecies biofilms”, Ricerche di Matematica, 66 (2017), 153–169 | DOI | MR
[4] J. P. Boltz, E. Mongenroth, D. Sen, “Mathematical modelling of biofilms and biofilm reactors for engineering design”, Water Sci. Technology, 62 (2010), 1821–1836 | DOI
[5] C. M. Guo, J. F. Chen, Z. Z. Zhang, L. J. Zhao, “Mathematical model of biofilm reactor treating industrial wastewater a review”, Adv. Materials Res., 356-360 (2011), 1739–1742 | DOI
[6] O. Wanner, R. Reichert, “Mathematical modelling of mixed-culture biofilms”, Biotechnol. Bioengrg., 48 (1996), 172–184 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[7] E. Alpkvist, I. Yu. Klapper, “A multidimensional multispecies continuum model for heterogeneous biofilm development”, Bull. Math. Biol., 69:2 (2007), 765–789 | DOI | Zbl
[8] B. D'Acunto, L. Frunzo, M. R. Mattei, “Qualitative analysis of the moving boundary problem for a biofilm reactor model”, Math. Anal. Appl., 438 (2016), 474–491 | DOI | MR | Zbl
[9] A. Masic, H. J. Eberl, “A modeling and simulation study of the role of suspended microbial populations in nitrification in a biofilm reactor”, Bull. Math. Biol., 76 (2014), 27–58 | DOI | MR | Zbl
[10] Oleinik A.Ya., Vasilenko T.V., Rybachenko S.A., Khamad I.A., “Modelirovanie protsessov doochistki khozyaistvenno-bytovykh stochnykh vod na filtrakh”, Problemy vodopostachannya, vodovidvedennya ta gidravliki, 7 (2006), 85–97
[11] R. Christiansen, L. Hollesen, R. Harremoes, “Liquid film diffusion of reaction rate in submergen biofilters”, Water Res., 29:1 (1995), 947–952 | DOI
[12] S. V. Taylor, P. C.D. Milly, Jaffe P. R., “Biofilm growth and the related changes in the physical properties of a porous medium”, Water Resources Res., 26:9 (1990), 2161–2169 | DOI
[13] Vavilin V.A., Nelineinye modeli biologicheskoi ochistki i protsessov samoochischeniya v rekakh, Nauka, M., 1983
[14] Nazarov S.A., Asimptoticheskaya teoriya tonkii plastin i sterzhnei, Nauchn. kniga, Novosibirsk, 2002
[15] Oleinik O.A., Iosifyan G.A., Shamaev A.S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990
[16] Agranovich M.S., “Smeshannye zadachi v lipshitsevoi oblasti dlya silno ellipticheskikh sistem 2-go poryadka”, Funkts. analiz i ego pril., 2011, no. 2, 1–22 | DOI