Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_2_a16, author = {V. V. Shepelev}, title = {Hydrodynamic modeling of laser-induced shock waves in aluminum in a cylindrically-symmetric formulation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {215--229}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a16/} }
TY - JOUR AU - V. V. Shepelev TI - Hydrodynamic modeling of laser-induced shock waves in aluminum in a cylindrically-symmetric formulation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 215 EP - 229 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a16/ LA - ru ID - SJIM_2023_26_2_a16 ER -
%0 Journal Article %A V. V. Shepelev %T Hydrodynamic modeling of laser-induced shock waves in aluminum in a cylindrically-symmetric formulation %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 215-229 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a16/ %G ru %F SJIM_2023_26_2_a16
V. V. Shepelev. Hydrodynamic modeling of laser-induced shock waves in aluminum in a cylindrically-symmetric formulation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 215-229. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a16/
[1] A. Y. Vorobyev, C. Guo, “Colorizing metals with femtosecond laser pulses”, Appl. Phys. Lett., 92 (2008), 041914 | DOI
[2] J. Bonse, J. Kruger, S. Hohm, A. Rosenfeld, “Femtosecond laser-induced periodic surface structures”, Laser Appl., 24:4 (2012), 042006 | DOI
[3] C. L.A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, P. D. Lee, “In situ x-ray imaging of defect and molten pool dynamics in laser additive manufacturing”, Nat. Commun., 9 (2018), 1355 | DOI
[4] U. S. Bertoli, B. E. MacDonald, J. M. Schoenung, “Stability of cellular microstructure in laser powder bed fusion of 316l stainless steel”, Mater. Sci. Engrg.: A, 739 (2019), 109–117 | DOI
[5] E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, G. A. Shafeev, “Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses”, Optics Express, 17:15 (2009), 12650–12659 | DOI
[6] D. Zhang, B. Gokce, S. Barcikowski, “Laser synthesis and processing of colloids: Fundamentals and applications”, Chem. Rev, 117:5 (2017), 3990–4103 | DOI
[7] T. Sano, T. Eimura, R. Kashiwabara, T. Matsuda, Y. Isshiki, A. Hirose, S. Tsutsumi, K. Ara-kawa, T. Hashimoto, K. Masaki, Y. Sano, “Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay, under atmospheric conditions”, J. Laser Appl., 29:1 (2017), 012005 | DOI
[8] U. Trdan, T. Sano, D. Klobcar, Y. Sano, J. Grum, R. Sturm, “Improvement of corrosion re-sistance of AA2024-T3 using femtosecond laser peening without protective and confining medium”, Corros. Sci, 143 (2018), 46–55 | DOI
[9] LSP Technologies: Introduction to Laser Peening, https://www.lsptechnologies.com/wp-content/uploads/2019/03/Intro-to-Laser-Peening-Webinar.pdf
[10] V. V. Shepelev, N. A. Inogamov, “Two-dimensional turning of thermal flux from normal to lateral propagation in thin metal film irradiated by femtosecond laser pulse”, J. Phys. Conf. Ser., 946 (2018), 012010 | DOI
[11] V. V. Shepelev, N. A. Inogamov, S. V. Fortova, “Thermal and dynamic effects of laser irradiation of thin metal films”, Optical and Quantum Electronics, 52:2 (2020) | DOI
[12] V. V. Shepelev, N. A. Inogamov, S. V. Fortova, P. A. Danilov, S. I. Kudryashov, A. A. Kuchmizhak, O. B. Vitrik, “Action of a femtosecond laser pulse on thin metal film supported by glass substrate”, J. Phys. Conf. Ser., 1128 (2018), 012092 | DOI
[13] V. V. Shepelev, N. A. Inogamov, P. A. Danilov, S. I. Kudryashov, A. A. Kuchmizhak, O. Vitrik, “B Ultrashort pulse action onto thin film on substrate: Qualitative model of shock propagation in sub-strate explaining phenomenon of fast growth of a hole with increase of absorbed energy”, J. Phys. Conf. Ser., 1147 (2019), 012065 | DOI
[14] V. Shepelev, N. A. Inogamov, S. V. Fortova, “The role of geometry in the generation of a shock wave by a femtosecond laser pulse”, J. Phys. Conf. Ser., 1787 (2021), 012023 | DOI
[15] V. V. Shepelev, N. A. Inogamov, Yu. V. Petrov, S. V. Fortova, “Equations of state of the Mie-Gruneisen type as applied to problems of laser hardening of materials”, J. Phys. Conf. Ser. (to appear)
[16] S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. A. Khokhlov, “Ablated matter expansion and crater formation under the action of ultrashort laser pulse”, J. Experiment. Theor. Phys., 103:2 (2006), 183–197 | DOI
[17] S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishikhara, Yu. V. Petrov, V. A. Khokhlov, “For mirovanie kratera i otkolnoi obolochki korotkim lazernym impulsom”, Mat. modelirovanie, 18:8 (2006), 111–122 | Zbl
[18] D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, S. Eliezer, “Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum”, Phys. Rev. E, 65 (2001), 016409 | DOI
[19] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer-Verl, 1999 | MR | Zbl
[20] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR
[21] E. Toro, M. Spruce, W. Speares, “Restoration of the contact surface in the HLL Riemann solver”, Shock Waves, 4 (1994), 25–34 | DOI | Zbl
[22] A. Harten, P. Lax, B. van Leer, “On upstream differencing and godunov type methods for hyperbolic conservation Laws”, SIAM Rev, 25:1 (1983), 35–61 | DOI | MR | Zbl
[23] Roe P., “Approximate Riemann solvers, parameter vectors and difference schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl
[24] R. Courant, K. Friedrichs, H. Lewy, “Uber die partiellen differenzengleichungen der mathematischen physic”, Mathematische Annalen, 100:1 (1928), 32–74 | DOI | MR
[25] C. W. Shu, “Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Springer-Verl, Berlin–Heidelberg, 1998, 325–432 | DOI | MR | Zbl
[26] A. V. Bushman, V. E. Fortov, “Model equations of state”, Sov. Phys. Usp, 26:6 (1983), 465–496 | DOI
[27] A. V. Bushman, G. I. Kanel, A. L. Ni, V. E. Fortov, Thermophysics and Dynamics of Intense Pulse Loadings, Taylor Fransis, London, 1993
[28] K. V. Khishchenko, “The equation of state for magnesium at high pressures”, Tech. Phys. Lett, 30:10 (2004), 829–831 | DOI
[29] I. V. Lomonosov, “Multi-phase equation of state for aluminum”, Laser Part. Beams, 25 (2007), 567–584 | DOI
[30] J. H. Rose, J. R. Smith, F. Guinea, J. Ferrante, “Universal features of the equation of state of metals”, Phys. Rev. B, 29 (1984), 2963 | DOI
[31] Y. B. Zel'dovich, Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover, 2002
[32] S. I. Anisimov, V. V. Zhakhovsky, N. A. Inogamov, K. P. Migdal, Y. V. Petrov, V. A. Khokhlov, “High energy-density physics and laser technologies”, J. Experiment. Theor. Phys, 129:4 (2019), 757–782 | DOI
[33] V. V. Zhakhovsky, M. M. Budzevich, N. A. Inogamov, I. I. Oleynik, C. T. White, “Two-zone elastic-plastic single shock waves in solids”, Phys. Rev. Lett., 107:13 (2011), 135502 | DOI