Impact of liquid drop over a superhydrophobic surface
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 142-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

The impact of a liquid drop over a copper surface is investigated. The substrate is assumed to be superhydrophobic with a equilibrium contact angle of 150$^\circ$. Based on the volume of the drop, the Bond and Weber numbers are 0.23 and 1.6, respectively. Surface temperature and ambient air is at 298 K, and the temperature of the liquid drop is 5 K lower than the ambient. Simulation of conjugate heat transfer is performed using the axi-symmetric coordinate system. The Kistler contact line model is used to predict the dynamic contact angle of the drop during spreading. In the present work, we investigate the temporal variation of the shear stress and the wall heat flux induced over a substrate during the drop spreading.
Keywords: drop impact, superhydrophobic surface, surface temperature.
@article{SJIM_2023_26_2_a11,
     author = {P. M. Somwanshi and V. V. Cheverda and O. A. Kabov},
     title = {Impact of liquid drop over a superhydrophobic surface},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {142--154},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a11/}
}
TY  - JOUR
AU  - P. M. Somwanshi
AU  - V. V. Cheverda
AU  - O. A. Kabov
TI  - Impact of liquid drop over a superhydrophobic surface
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 142
EP  - 154
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a11/
LA  - ru
ID  - SJIM_2023_26_2_a11
ER  - 
%0 Journal Article
%A P. M. Somwanshi
%A V. V. Cheverda
%A O. A. Kabov
%T Impact of liquid drop over a superhydrophobic surface
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 142-154
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a11/
%G ru
%F SJIM_2023_26_2_a11
P. M. Somwanshi; V. V. Cheverda; O. A. Kabov. Impact of liquid drop over a superhydrophobic surface. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 142-154. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a11/

[1] A. M. Worthington, “On the forms assumed by drops of liquids falling vertically on a horizontal plate”, Proc. Royal Soc., 25 (1876), 261–272

[2] A. L. Yarin, “Drop impact dynamics: splashing, spreading, receding, bouncing”, Ann. Rev. Fluid Mech, 38 (2006), 159–192 | DOI | MR | Zbl

[3] C. Josserand, S. T. Thoroddsen, “Drop impact on a solid surface”, Ann. Rev. Fluid Mech, 48 (2016), 365–391 | DOI | MR | Zbl

[4] S. Khandekar, G. Sahu, K. Muralidhar, E. Y. Gatapova, O. A. Kabov, R. Hu, X. Luo, L. Zhao, “Cooling of high-power LEDs by liquid sprays: Challenges and prospects”, Appl. Thermal Engrg., 184 (2021), 115640 | DOI

[5] A. L. Karchevsky, I. V. Marchuk, O. A. Kabov, “Calculation of the heat flux near the liquid-gas-solid contact line”, Appl. Math. Model, 40:2 (2016), 1029–1037 | DOI | Zbl

[6] V. V. Cheverda, I. V. Marchuk, A. L. Karchevskii, E. V. Orlik, O. A. Kabov, “Eksperimentalnoe issledovanie teploobmena v stekayuschem po naklonnoi folge rucheike”, Teplofizika i aeromekhanika, 23:3 (2016), 431–436 | MR

[7] A. L. Karchevsky, “Development of the heated thin foil technique for investigating nonstationary transfer processes”, Interfacial Phenomena and Heat Transfer, 6:3 (2018), 179–185 | DOI

[8] A. K. Jaiswal, B. Benard, V. Garg, S. Khandekar, “Evaporation dynamics of liquid bridge formed between two heated hydrophilic and hydrophobic flat surfaces”, Interfacial Phenomena and Heat Transfer, 10:1 (2022), 1–14 | DOI

[9] A. L. Karchevsky, V. V. Cheverda, I. V. Marchuk, O. A. Kabov, T. G. Ponomarenko, V. S. Sulyaeva, “Heat flux density evaluation in the region of contact line of drop on a sapphire surface using infrared thermography measurements”, Microgravity Sci. Technology, 33:53 (2021) | DOI

[10] V. V. Cheverda, A. L. Karchevskii, I. V. Marchuk, O. A. Kabov, “Plotnost teplovogo potoka v oblasti kontaktnoi linii kapli, lezhaschei na gorizontalnoi poverkhnosti tonkoi nagrevaemoi folgi”, Teplofizika i aeromekhanika, 24:5 (107) (2017), 825–828 | MR

[11] P. C. Stephan, C. A. Busse, “Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls”, Internat. J. Heat and Mass Transfer, 35 (1992), 383–391 | DOI

[12] Wang J-X, W. Guo, K. Xiong, Wang S-N, “Review of aerospace-oriented spray cooling technology”, Progress in Aerospace Sci., 116 (2020), 100635 | DOI

[13] C. Chen, Z. Tang, “Investigation of the spray formation and breakup process in an open-end swirl injector”, Sci. Progress, 103 (2020), 1–19

[14] I. Mudawar, K. Estes, “Optimizing and predicting CHF in spray cooling of a square surface”, ASME J. Heat Transfer, 118 (1996), 672–679 | DOI

[15] Y. Q. Wang, M. H. Liu, D. Liu, K. Xu, Y. L. Chen, “Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime”, Experimental Thermal and Fluid Sci, 34 (2010), 933–942 | DOI

[16] M. Visaria, I. Mudawar, “Theoretical and experimental study of the effects of spray inclination on two phase spray cooling and critical heat flux”, Internat. J. Heat and Mass Transfer, 51 (2008), 2398–2410 | DOI

[17] Z. Zhang, P. X. Jiang, X. L. Ouyang, J. N. Chen, D. M. Christopher, “Experimental investigation of spray cooling on smooth and micro-structured surfaces”, Internat. J. Heat and Mass Transfer, 76 (2014), 366–375 | DOI

[18] G. Liang, I. Mudawar, “Review of drop impact on heated walls”, Internat. J. Heat and Mass Transfer, 106 (2017), 103–126 | DOI

[19] A. Gholijani, C. Schlawitschek, T. Gambaryan-Roisman, P. Stephan, “Heat transfer during drop impingement onto a hot wall: The influence of wall superheat, impact velocity, and drop diameter”, Internat. J. Heat and Mass Transfer., 153 (2020), 119661 | DOI

[20] L. Liu, Y. Zhang, G. Cai, P. A. Tsai, “High-speed dynamics and temperature variation during drop impact on a heated surface”, Internat. J. Heat and Mass Transfer., 189 (2022), 122710 | DOI

[21] E. Y. Gatapova, E. O. Kirichenko, B. Bai, O. A. Kabov, “Interaction of impacting water drop with a heated surface and breakup into microdrops”, Interfacial Phenomena and Heat Transfer, 6:1 (2018), 75–88 | DOI

[22] D. Biolè, V. Bertola, “Measuring fluid interfaces, corners, and angles from high-speed digital images of impacting drops”, J. Flow Visualization and Image Processing, 28:1 (2021), 1–19 | DOI

[23] P. Yue, C. Zhou, J. J. Feng, “Sharp-interface limit of the Cahn-Hilliard model for moving contact lines”, J. Fluid Mech, 645 (2010), 279–294 | DOI | MR | Zbl

[24] P. Yue, C. Zhou, J. J. Feng, “Spontaneous shrinkage of drops and mass conservation in phase-filed simulations”, J. Comput. Phys, 223 (2007), 1–9 | DOI | MR | Zbl

[25] P. M. Somwanshi, K. Muralidhar, S. Khandekar, C. Vyacheslav, “Mixing and wall heat transfer during vertical coalescence of drops placed over a superhydrophobic surface”, Interfacial Phenomenon and Heat Transfer, 8:3 (2020), 207–224 | DOI

[26] S. F. Kistler, Hydrodynamics of Wetting in Wettability, Marcel Dekker, N.Y., 1993

[27] M. Schremb, S. Borchert, E. Berberovic, S. Jakirlic, I. V. Roisman, C. Tropea, “Computational modelling of flow and conjugate heat transfer of a drop impacting onto a cold wall”, Internat. J. Heat and Mass Transfer, 109 (2017), 971–980 | DOI

[28] A. K. Jaiswal, S. Khandekar, “Dynamics of a droplet impacting a sessile droplet on a superhydrophobic surface: role of boundary conditions during droplet placement”, J. Flow Visualization and Image Processing, 28:4 (2021), 69–89 | DOI