Three-dimensional simulation of single- and multiphase flow in roughness microchannels
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 130-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

To predict the behavior of reservoir fluids in porous media and their investigation at the macro level, it is necessary to study in details the hydrodynamic flows in porous media at the microscale from the point of view of the individual pore spaces, taking into account their structural features. This work is dedicated to the investigation of the periodic flow of a viscous incompressible fluid and dispersed systems in a flat channel of rectangular cross section with irregular side walls at a constant pressure drop. Using an efficient numerical approach based on the 3D boundary element method accelerated by the fast multipole method on heterogeneous computing architectures, the influence of irregularities of different sizes and shapes on the microchannel walls on the hydrodynamic flows of the viscous fluid flow and the emulsion droplet dynamics in a capillary micro-model of the porous medium has been studied. The results of this work can also be useful in the design of microfluidic devices.
Keywords: computational hydrodynamics, Stokes flow, roughness microchannels, dispersed systems, boundary element method, fast multipole method, GPU. .
@article{SJIM_2023_26_2_a10,
     author = {O. A. Solnyshkina and N. B. Fatkullina and A. Z. Bulatova},
     title = {Three-dimensional simulation of single- and multiphase flow in roughness microchannels},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {130--141},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a10/}
}
TY  - JOUR
AU  - O. A. Solnyshkina
AU  - N. B. Fatkullina
AU  - A. Z. Bulatova
TI  - Three-dimensional simulation of single- and multiphase flow in roughness microchannels
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 130
EP  - 141
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a10/
LA  - ru
ID  - SJIM_2023_26_2_a10
ER  - 
%0 Journal Article
%A O. A. Solnyshkina
%A N. B. Fatkullina
%A A. Z. Bulatova
%T Three-dimensional simulation of single- and multiphase flow in roughness microchannels
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 130-141
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a10/
%G ru
%F SJIM_2023_26_2_a10
O. A. Solnyshkina; N. B. Fatkullina; A. Z. Bulatova. Three-dimensional simulation of single- and multiphase flow in roughness microchannels. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 130-141. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a10/

[1] L. A. Kovaleva, A. Musin, A., R. R. Zinnatullin, I. Sh. Akhatov, “Destruction of water-in-oil emulsions in electromagnetic fields”, ASME 2011 Internat. Mech. Engrg. Congress and Exposition, IMECE, v. 6, 2011, 617–621 | DOI

[2] L. A. Kovaleva, A. A. Musin, Yu. I. Fatkhullina, “Microwave heating of an emulsion drop”, High Temperature, 56:2 (2018), 234–238 | DOI

[3] O. A. Abramova, Yu. A. Pityuk, N. A. Gumerov, I. Akhatov, “S An efficient method for simulation of the dynamics of a large number of deformable droplets in the stokes regime”, Dokl. Phys, 59:5 (2014), 236–240 | DOI

[4] J. F. Roca, M. Carvalho, “S Flow of a drop through a constricted microcapillary”, Comput. Fluids, 87 (2013), 50–56 | DOI | MR | Zbl

[5] L. C. Wrobel, D. Soares, C. L. Bhaumik, “Drop deformation in Stokes flow through converging channels”, Engrg. Analysis with Boundary Elements, 33:7 (2009), 993–1000 | DOI | MR | Zbl

[6] B. Yin, H. Luo, “Numerical simulation of drops inside an asymmetric microchannel with protrusions”, Comput. Fluids, 82 (2013), 14–28 | DOI | MR | Zbl

[7] S. A. Sivak, M. E. Royak, I. M. Stupakov, “Ispolzovanie metoda bystrykh multipolei pri optimi zatsii metoda granichnykh elementov dlya resheniya uravneniya Gelmgoltsa”, Sib. zhurn. industr. matematiki, 24:3 (2021), 83–100 | DOI | Zbl

[8] N. A. Gumerov, R. Duraiswami, “Fast multipole methods on graphics processors”, J. Comput. Phys, 227:18 (2008), 8290–8313 | DOI | MR | Zbl

[9] A. Rawool, S. K. Mitra, S. G. Kandlikar, “Numerical simulation of flow through microchannels with designed roughness”, Microfluidics and Nanofluidics, 2:3 (2006), 215–221 | DOI

[10] Z. Li, J. Wan, H. Zhan, L. He, K. Huang, “An energy perspective of pore scale simulation and experimental evidence of fluid flow in a rough conduit”, J. Hydrol., 587 (2020), 125010 | DOI

[11] J. B. Taylor, A. L. Carrano, S. G. Kandlikar, “Characterization of the effect of surface roughness and texture on fluid flow past, present, and future”, Internat. J. Thermal Sci, 45:10 (2006), 962–968 | DOI

[12] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Univ. Press, Cambridge, 1992 | MR | Zbl

[13] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[14] Y. Saad, Iterative Methods for Sparse Linear System, SIAM, Philadelphia, 2000 | MR

[15] Y. A. Itkulova, O. A. Solnyshkina, N. A. Gumerov, “Toward large scale simulations of emulsion flows in microchannels using fast multipole and graphics processor accelerated boundary element method”, ASME 2012 Internat. Mech. Engrg. Congress and Exposition, 2012, 873–881 | DOI

[16] J. H. Spurk, H. Aksel, Fluid Mechanics, Springer-Verl, Berlin–Heidelberg, 2008 | Zbl

[17] O. A. Solnyshkina, N. B. Fatkullina, A. Z. Bulatova, “Three-dimensional simulation of drop motion in channels of different cross-sections”, J. Phys. Conf. Ser., 1675 (2020), 012099 | DOI