Numerical study of the structure of turbulent flow and heat transfer in a flat channel with hexagonal honeycombs of various depths
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 14-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of a numerical simulation by the RANS method of a separated flow in a flat channel with honeycomb surface are presented. The simulation was performed at the Reynolds Re = 14 000 – 28 000 determined from the average mass velocity and channel height. The distribution of the local Nusselt number was obtained for various Reynolds numbers and honeycomb depths. It is shown that the distribution of the Nusselt number on the surface is highly non-uniform, in particular, the maximum heat transfer is observed near the upper edge of the ribs, in the vicinity of which the largest velocity gradient is observed.
Keywords: heat transfer enhancement, turbulent flow, numerical simulation, hexagonal cells. .
@article{SJIM_2023_26_2_a1,
     author = {A. V. Barsukov and V. V. Terekhov and V. I. Terekhov},
     title = {Numerical study of the structure of turbulent flow and heat transfer in a flat channel with hexagonal honeycombs of various depths},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {14--24},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a1/}
}
TY  - JOUR
AU  - A. V. Barsukov
AU  - V. V. Terekhov
AU  - V. I. Terekhov
TI  - Numerical study of the structure of turbulent flow and heat transfer in a flat channel with hexagonal honeycombs of various depths
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 14
EP  - 24
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a1/
LA  - ru
ID  - SJIM_2023_26_2_a1
ER  - 
%0 Journal Article
%A A. V. Barsukov
%A V. V. Terekhov
%A V. I. Terekhov
%T Numerical study of the structure of turbulent flow and heat transfer in a flat channel with hexagonal honeycombs of various depths
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 14-24
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a1/
%G ru
%F SJIM_2023_26_2_a1
A. V. Barsukov; V. V. Terekhov; V. I. Terekhov. Numerical study of the structure of turbulent flow and heat transfer in a flat channel with hexagonal honeycombs of various depths. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 14-24. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a1/

[1] S. A. Isaev, N. V. Kornev, A. I. Leontiev, E. Hassel, “Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel”, Internat. J. Heat Mass Transf, 53 (2019), 178–197 | DOI

[2] S. Wang, W. Du, L. Luo, D. Qiu, X. Zhang, S. Li, “Flow structure and heat transfer characteristics of a dimpled wedge channel with a bleed hole in dimple at different orientations and locations”, Internat. J. Heat Mass Transf, 117 (2018), 1216–1230 | DOI | MR

[3] Z. Shen, H. Qu, D. Zhang, Y. Xie, “Effect of bleed hole on flow and heat transfer performance of U-shaped channel with dimple structure”, Internat. J. Heat Mass Transf, 66 (2013), 10–22 | DOI

[4] P. Weihing, B. A. Younis, B. Weigand, “Heat transfer enhancement in a ribbed channel: Development of turbulence closures”, Internat. J. Heat Mass Transf, 76 (2014), 509–522 | DOI

[5] T. Motoki, Y. Ohno, M. Hishida, G. Tanaka, “Augmentation of heat transportation by an oscillatory flow in grooved ducts”, Heat Transfer Asian Research, 37:2 (2008), 68–85 | DOI

[6] S. Leonardi, P. Orlandi, R. A. Antonia, “Properties of d- and k-type roughness in a turbulent channel flow”, Phys. Fluids, 19 (2007), 125101 | DOI | Zbl

[7] T. Bogatko, V. Terekhov, A. Dyachenko, Ya. Smulsky, “Heat transfer behind the backward-facing step under the influence of longitudinal pressure gradient”, MATEC Web of Conf., 92 (2017), 01030 | DOI

[8] K. Saha, S. Acharya, C. Nakamata, “Heat transfer enhancement and thermal performance of lattice structures for internal cooling of airfoil trailing edges”, J. Thermal Sci. Engrg. Appl., 5 (2013), 011001, 1 pp. | DOI | MR

[9] T. T. Wong, C. W. Leung, Z. Y. Li, W. Q. Tao, “Turbulent convection of air-cooled rectangular duct with surface-mounted cross-ribs”, Internat. J. Heat Mass Transf, 46 (2003), 4629–4638 | DOI

[10] C. Zimmerer, P. Gschwind, G. Gaiser, V. Kottke, “Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls”, Experiment. Thermal Fluid Sci, 26 (2002), 269–273 | DOI

[11] W. Du, L. Luo, S. Wang, J. Liu, B. Sunden, “Heat transfer and flow structure in a detached latticework duct”, Appl. Thermal Engrg, 155 (2019), 24–39 | DOI

[12] A. A. Klimov, C. A. Trdatyan, “Ispolzovanie sotovoi poverkhnosti dlya upravleniya pogranichnym sloem”, Teplofizika vysokikh temperatur, 155:6 (2003), 901–906

[13] H. H. Kovalnogov, “Model turbulentnogo perenosa v pogranichnom sloe na perforirovannoi poverkhnosti s glukhimi dempfiruyuschimi polostyami”, Izv. vuzov. Problemy energetiki, 2003, no. 5-6, 41–47

[14] V. I. Terekhov, Ya. I. Smulskii, K. A. Sharov, A. V. Zolotukhin, “Struktura pogranichnogo sloya pri obtekanii sotovoi poverkhnosti v ploskom kanale”, Teplofizika i aeromekhanika, 21:6 (2014), 733–738

[15] P. A. Durbin, “Near-wall turbubulence closure modeling without «damping function»”, Theor. Comput. Fluid Dynamics, 3 (1991), 1–13 | DOI | Zbl

[16] A. V. Barsukov, V. V. Terekhov, V. I. Terekhov, “Numerical simulation of flow dynamics and heat transfer in a rectangular channel with periodic ribs on one of one of the walls”, J. Phys. Conf. Ser, 2119 (2021), 012028 | DOI

[17] V. I. Terekhov, N. I. Yarygina, “Forced convection heat transfer from the bottom of trenches with rectangular or inclined walls”, Experiment. Heat Transfer, 9 (1996), 133–148 | DOI

[18] A. Yu. Dyachenko, V. I. Terekhov, N. I. Yarygina, “Vortex formation and heat transfer in turbulent flow past a transverse cavity with inclined frontal and rear walls”, Internat. J. Heat Mass Transf, 51:13-14 (2008), 3275–3286 | DOI

[19] V. I. Terekhov, S. V. Kalinina, Yu. M. Mshvidobadze, “Heat transfer coefficient and aerodynamical resistance on a surface with a singe dimple”, Enhanced Heat Transf, 4:2 (1997), 131–145 | DOI