Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_2_a1, author = {A. V. Barsukov and V. V. Terekhov and V. I. Terekhov}, title = {Numerical study of the structure of turbulent flow and heat transfer in a flat channel with hexagonal honeycombs of various depths}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {14--24}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a1/} }
TY - JOUR AU - A. V. Barsukov AU - V. V. Terekhov AU - V. I. Terekhov TI - Numerical study of the structure of turbulent flow and heat transfer in a flat channel with hexagonal honeycombs of various depths JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 14 EP - 24 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a1/ LA - ru ID - SJIM_2023_26_2_a1 ER -
%0 Journal Article %A A. V. Barsukov %A V. V. Terekhov %A V. I. Terekhov %T Numerical study of the structure of turbulent flow and heat transfer in a flat channel with hexagonal honeycombs of various depths %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 14-24 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a1/ %G ru %F SJIM_2023_26_2_a1
A. V. Barsukov; V. V. Terekhov; V. I. Terekhov. Numerical study of the structure of turbulent flow and heat transfer in a flat channel with hexagonal honeycombs of various depths. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 14-24. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a1/
[1] S. A. Isaev, N. V. Kornev, A. I. Leontiev, E. Hassel, “Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel”, Internat. J. Heat Mass Transf, 53 (2019), 178–197 | DOI
[2] S. Wang, W. Du, L. Luo, D. Qiu, X. Zhang, S. Li, “Flow structure and heat transfer characteristics of a dimpled wedge channel with a bleed hole in dimple at different orientations and locations”, Internat. J. Heat Mass Transf, 117 (2018), 1216–1230 | DOI | MR
[3] Z. Shen, H. Qu, D. Zhang, Y. Xie, “Effect of bleed hole on flow and heat transfer performance of U-shaped channel with dimple structure”, Internat. J. Heat Mass Transf, 66 (2013), 10–22 | DOI
[4] P. Weihing, B. A. Younis, B. Weigand, “Heat transfer enhancement in a ribbed channel: Development of turbulence closures”, Internat. J. Heat Mass Transf, 76 (2014), 509–522 | DOI
[5] T. Motoki, Y. Ohno, M. Hishida, G. Tanaka, “Augmentation of heat transportation by an oscillatory flow in grooved ducts”, Heat Transfer Asian Research, 37:2 (2008), 68–85 | DOI
[6] S. Leonardi, P. Orlandi, R. A. Antonia, “Properties of d- and k-type roughness in a turbulent channel flow”, Phys. Fluids, 19 (2007), 125101 | DOI | Zbl
[7] T. Bogatko, V. Terekhov, A. Dyachenko, Ya. Smulsky, “Heat transfer behind the backward-facing step under the influence of longitudinal pressure gradient”, MATEC Web of Conf., 92 (2017), 01030 | DOI
[8] K. Saha, S. Acharya, C. Nakamata, “Heat transfer enhancement and thermal performance of lattice structures for internal cooling of airfoil trailing edges”, J. Thermal Sci. Engrg. Appl., 5 (2013), 011001, 1 pp. | DOI | MR
[9] T. T. Wong, C. W. Leung, Z. Y. Li, W. Q. Tao, “Turbulent convection of air-cooled rectangular duct with surface-mounted cross-ribs”, Internat. J. Heat Mass Transf, 46 (2003), 4629–4638 | DOI
[10] C. Zimmerer, P. Gschwind, G. Gaiser, V. Kottke, “Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls”, Experiment. Thermal Fluid Sci, 26 (2002), 269–273 | DOI
[11] W. Du, L. Luo, S. Wang, J. Liu, B. Sunden, “Heat transfer and flow structure in a detached latticework duct”, Appl. Thermal Engrg, 155 (2019), 24–39 | DOI
[12] A. A. Klimov, C. A. Trdatyan, “Ispolzovanie sotovoi poverkhnosti dlya upravleniya pogranichnym sloem”, Teplofizika vysokikh temperatur, 155:6 (2003), 901–906
[13] H. H. Kovalnogov, “Model turbulentnogo perenosa v pogranichnom sloe na perforirovannoi poverkhnosti s glukhimi dempfiruyuschimi polostyami”, Izv. vuzov. Problemy energetiki, 2003, no. 5-6, 41–47
[14] V. I. Terekhov, Ya. I. Smulskii, K. A. Sharov, A. V. Zolotukhin, “Struktura pogranichnogo sloya pri obtekanii sotovoi poverkhnosti v ploskom kanale”, Teplofizika i aeromekhanika, 21:6 (2014), 733–738
[15] P. A. Durbin, “Near-wall turbubulence closure modeling without «damping function»”, Theor. Comput. Fluid Dynamics, 3 (1991), 1–13 | DOI | Zbl
[16] A. V. Barsukov, V. V. Terekhov, V. I. Terekhov, “Numerical simulation of flow dynamics and heat transfer in a rectangular channel with periodic ribs on one of one of the walls”, J. Phys. Conf. Ser, 2119 (2021), 012028 | DOI
[17] V. I. Terekhov, N. I. Yarygina, “Forced convection heat transfer from the bottom of trenches with rectangular or inclined walls”, Experiment. Heat Transfer, 9 (1996), 133–148 | DOI
[18] A. Yu. Dyachenko, V. I. Terekhov, N. I. Yarygina, “Vortex formation and heat transfer in turbulent flow past a transverse cavity with inclined frontal and rear walls”, Internat. J. Heat Mass Transf, 51:13-14 (2008), 3275–3286 | DOI
[19] V. I. Terekhov, S. V. Kalinina, Yu. M. Mshvidobadze, “Heat transfer coefficient and aerodynamical resistance on a surface with a singe dimple”, Enhanced Heat Transf, 4:2 (1997), 131–145 | DOI