Numerical simulation of turbulent gas flow over a wavy wall
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 5-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the OpenFOAM open source software, a numerical study of the turbulent flow over a wavy surface was carried out for various values of the amplitude and wavelength of the disturbance of the channel wall. The RANS and LES models were used to describe the turbulent characteristics. The Reynolds number in the flow was 20000. Average profiles of velocities and shear stresses on the channel wall were obtained. The values of the amplitude and phase shift for disturbance of the shear stress were calculated for various geometrical parameters of the channel. The comparison was made with the theoretical model and experimental results.
Keywords: numerical simulation, RANS and LES models, wavy wall, shear stresses.
Mots-clés : turbulence
@article{SJIM_2023_26_2_a0,
     author = {Yu. S. Apostol and I. S. Vozhakov},
     title = {Numerical simulation of turbulent gas flow over a wavy wall},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a0/}
}
TY  - JOUR
AU  - Yu. S. Apostol
AU  - I. S. Vozhakov
TI  - Numerical simulation of turbulent gas flow over a wavy wall
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 5
EP  - 13
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a0/
LA  - ru
ID  - SJIM_2023_26_2_a0
ER  - 
%0 Journal Article
%A Yu. S. Apostol
%A I. S. Vozhakov
%T Numerical simulation of turbulent gas flow over a wavy wall
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 5-13
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a0/
%G ru
%F SJIM_2023_26_2_a0
Yu. S. Apostol; I. S. Vozhakov. Numerical simulation of turbulent gas flow over a wavy wall. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 5-13. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a0/

[1] V. De Angelis, P. Lombardi, S. Banerjee, “Direct numerical simulation of turbulent flow over a wavy wall”, Phys. Fluids, 9:8 (1997), 2429–2442 | DOI

[2] C. B. Thorsness, P. E. Morrisroe, T. J. Hanratty, “A comparison of linear theory with measurements of the variation of shear stress along a solid wave”, Chem. Engrg. Sci, 33:5 (1978), 579–592 | DOI

[3] D. P. Zilker, G. W. Cook, T. J. Hanratty, “Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows”, J. Fluid Mech, 82:1 (1977), 29–51 | DOI

[4] D. P. Zilker, T. J. Hanratty, “Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 2. Separated flows”, J. Fluid Mech, 90:2 (1979), 257–271 | DOI

[5] F. R. Menter, M. Kuntz, R. Langtry, “Ten years of industrial experience with the SST turbulence model”, Turbulence, Heat Mass Transfer, 4:1 (2003), 625–632

[6] M. Weickert, G. Teike, O. Schmidt, M. Sommerfeld, “Investigation of the LES WALE turbulence model within the lattice Boltzmann framework”, Comput. Math. Appl, 59:7 (2010), 2200–2214 | DOI | MR | Zbl

[7] O. Yu. Tsvelodub, D. G. Arkhipov, I. S. Vozhakov, “Issledovanie voln na poverkhnosti tonkoi plenki zhidkosti, uvlekaemoi turbulentnym gazovym potokom: modelirovanie vne ramok «kvazilaminarnogo» priblizheniya”, Teplofizika i aeromekhanika, 28:2 (2021), 239–253