Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_1_a7, author = {I. M. Kulikov and I. G. Chernykh and A. F. Sapetina and E. I. Vorobyov and V. G. Elbakyan}, title = {On a {Godunov-type} numerical scheme for describing the gas and dust components in problems of star formation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {85--97}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a7/} }
TY - JOUR AU - I. M. Kulikov AU - I. G. Chernykh AU - A. F. Sapetina AU - E. I. Vorobyov AU - V. G. Elbakyan TI - On a Godunov-type numerical scheme for describing the gas and dust components in problems of star formation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 85 EP - 97 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a7/ LA - ru ID - SJIM_2023_26_1_a7 ER -
%0 Journal Article %A I. M. Kulikov %A I. G. Chernykh %A A. F. Sapetina %A E. I. Vorobyov %A V. G. Elbakyan %T On a Godunov-type numerical scheme for describing the gas and dust components in problems of star formation %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 85-97 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a7/ %G ru %F SJIM_2023_26_1_a7
I. M. Kulikov; I. G. Chernykh; A. F. Sapetina; E. I. Vorobyov; V. G. Elbakyan. On a Godunov-type numerical scheme for describing the gas and dust components in problems of star formation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 85-97. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a7/
[1] E. I. Vorobyov, “Ejection of gaseous clumps from gravitationally unstable protostellar disks”, Astron. Astrophys., 590 (2016), 115 | DOI
[2] E. I. Vorobyov, V. G. Elbakyan, A. L. Plunkett, M. M. Dunham, M. Audard, M. Guedel, O. Dionatos, Knotty protostellar jets as a signature of episodic protostellar accretion?, Astron. Astrophys., 613 (2018), 18 | DOI
[3] E. I. Vorobyov, V. Akimkin, O. P. Stoyanovskaya, Y. Pavlyuchenkov, H. B. Liu, “Early evolution of viscous and self-gravitating circumstellar disks with a dust component”, Astron. Astrophys., 614 (2018), 98 | DOI
[4] E. I. Vorobyov, V. G. Elbakyan, “Gravitational fragmentation and formation of giant protoplanets on orbits of tens of au”, Astron. Astrophys., 618 (2018), 7 | DOI
[5] E. I. Vorobyov, V. G. Elbakyan, K. Omukai, T. Hosokawa, R. Matsukoba, M. Guedel, “Accretion bursts in low-metallicity protostellar disks”, Astron. Astrophys., 641 (2020), 72 | DOI
[6] M. Bate, “Collapse of a molecular cloud core to stellar densities: the formation and evolution of pre-stellar discs”, Monthly Notices Royal Astron. Soc., 417 (2011), 2036–2056 | DOI
[7] I. Kulikov, E. Vorobyov, “Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows”, J. Comput. Phys., 317 (2016), 318–346 | DOI | MR | Zbl
[8] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Mat. sb., 47(89):3 (1959), 271–306 | Zbl
[9] D. Einfeldt, C. Munz, P. Roe, B. Sjoegreen, “On Godunov-type methods near low densities”, J. Comput. Phys., 92 (1991), 273–295 | DOI | MR | Zbl
[10] S. K. Godunov, Y. D. Manuzina, M. A. Nazar'eva, “Experimental analysis of convergence of the numerical solution to a generalized solution in fluid dynamics”, Comput. Math. Math. Phys., 51 (2011), 88–95 | DOI | MR | Zbl
[11] S. K. Godunov, I. M. Kulikov, “Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee”, Comput. Math. Math. Phys., 54:6 (2014), 1012–1024 | DOI | MR | Zbl
[12] S. K. Godunov, V. V. Denisenko, D. V. Klyuchinskii, S. V. Fortova, V. V. Shepelev, “Study of entropy properties of a linearized version of Godunov's method”, Comput. Math. Math. Phys., 60 (2020), 628–640 | DOI | MR | Zbl
[13] G. Gallice, A. Chan, R. Loubere, P. Maire, “Entropy stable and positivity preserving Godunov-type schemes for multidimensional hyperbolic systems on unstructured grid”, J. Comput. Phys., 468 (2022), 111493 | DOI | MR
[14] S. Dellacherie, “Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number”, J. Comput. Phys., 229 (2010), 978–1016 | DOI | MR | Zbl
[15] S. K. Godunov, D. V. Klyuchinskii, S. V. Fortova, V. V. Shepelev, “Experimental studies of difference gas dynamics models with shock waves”, Comput. Math. Math. Phys., 58 (2018), 1201–1216 | DOI | MR | Zbl
[16] S. Chen, J. Li, Z. Li, W. Yuan, Z. Gao, “Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes”, J. Comput. Phys., 456 (2022), 111027 | DOI | MR
[17] M. Sekora, J. Stone, “A hybrid Godunov method for radiation hydrodynamics”, J. Comput. Phys., 229 (2010), 6819–6852 | DOI | MR | Zbl
[18] T. Gardiner, J. Stone, “An unsplit Godunov method for ideal MHD via constrained transport”, J. Comput. Phys., 205 (2005), 509–539 | DOI | MR | Zbl
[19] T. Gardiner, J. Stone, “An unsplit Godunov method for ideal MHD via constrained transport in three dimensions”, J. Comput. Phys., 227 (2008), 4123–4141 | DOI | MR | Zbl
[20] A. Mignone, P. Tzeferacos, “A second-order unsplit Godunov scheme for cell-centered MHD: The CTU GLM scheme”, J. Comput. Phys., 229 (2010), 2117–2138 | DOI | MR | Zbl
[21] I. M. Kulikov, “A low-dissipation numerical scheme based on a piecewise parabolic method on a local stencil for mathematical modeling of relativistic hydrodynamic flows”, Numer. Anal. Appl., 13 (2020), 117–126 | DOI | MR
[22] I. M. Kulikov, “On a modification of the Rusanov solver for the equations of special relativistic magnetic hydrodynamics”, J. Appl. Indust. Math., 14 (2020), 524–531 | DOI | MR | Zbl
[23] S. K. Godunov, S. P. Kiselev, I. M. Kulikov, V. I. Mali, “Numerical and experimental simulation of wave formation during explosion welding”, Proc. Steklov Inst. Math., 281 (2013), 12–26 | DOI | MR | Zbl
[24] A. A. Aganin, N. A. Khismatullina, “UNO modifications of the Godunov method for calculating the dynamics of an elastic-plastic body”, Lobachevskii J. Math., 40 (2019), 256–262 | DOI | MR | Zbl
[25] N. A. Khismatullina, “Calculation of waves in an elastic-plastic body based on ENO modifications of the Godunov method”, Lobachevskii J. Math., 41 (2020), 1228–1234 | DOI | MR | Zbl
[26] A. Barbas, P. Velarde, “Development of a Godunov method for Maxwell's equations with adaptive mesh refinement”, J. Comput. Phys., 300 (2015), 186–201 | DOI | MR | Zbl
[27] J. Moreno, E. Oliva, P. Velarde, “EMcLAW: An unsplit Godunov method for Maxwell's equations including polarization, metals, divergence control and AMR”, Comput. Phys. Comm., 260 (2021), 107268 | DOI | MR
[28] X. Lei, J. Li, “A staggered-projection Godunov-type method for the Baer-Nunziato two-phase model”, J. Comput. Phys., 437 (2021), 110312 | DOI | MR
[29] B. Ghitti, C. Berthon, M. Hoang Le, E. Toro, “A fully well-balanced scheme for the 1D blood flow equations with friction source term”, J. Comput. Phys., 421 (2020), 109750 | DOI | MR
[30] I. Kulikov, “Molecular cloud collapse to stellar densities: Models on moving geodesic vs. Unstructured tetrahedron vs. nested meshes”, J. Phys. Conf. Ser., 2028 (2021), 012001 | DOI
[31] I. Chernykh, E. Vorobyov, V. Elbakyan, I. Kulikov, “The impact of compiler level optimization on the performance of iterative Poisson solver for numerical modeling of protostellar disks”, Comm. Comput. Inform. Sci., 1510 (2021), 415–426 | DOI