On a Godunov-type numerical scheme for describing the gas and dust components in problems of star formation
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 85-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents one construction of the Godunov-type method based on the separation of operators describing the work of pressure forces and advective transfer. Separate consideration of advective transfer makes it possible to describe the motion of both gas and dust components within the framework of a single numerical scheme. In the case of describing gas dynamics, the work of pressure forces is taken into account at a separate stage, regardless of transfer. This makes it possible to use the numerical scheme in solving star formation problems, where it is necessary to jointly solve the equations of hydrodynamics and equations for dust motion. A piecewise parabolic representation of physical variables in all directions is used to reduce the dissipation of the numerical method. The numerical method has been verified on the Riemann problems for a hydrodynamic and dust discontinuity, the Sedov problem of point explosion, and the problem of dust cloud collapse, which have an analytical solution.
Keywords: numerical modeling, computational astrophysics, Godunov-type scheme. .
@article{SJIM_2023_26_1_a7,
     author = {I. M. Kulikov and I. G. Chernykh and A. F. Sapetina and E. I. Vorobyov and V. G. Elbakyan},
     title = {On a {Godunov-type} numerical scheme for describing the gas and dust components in problems of star formation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {85--97},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a7/}
}
TY  - JOUR
AU  - I. M. Kulikov
AU  - I. G. Chernykh
AU  - A. F. Sapetina
AU  - E. I. Vorobyov
AU  - V. G. Elbakyan
TI  - On a Godunov-type numerical scheme for describing the gas and dust components in problems of star formation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 85
EP  - 97
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a7/
LA  - ru
ID  - SJIM_2023_26_1_a7
ER  - 
%0 Journal Article
%A I. M. Kulikov
%A I. G. Chernykh
%A A. F. Sapetina
%A E. I. Vorobyov
%A V. G. Elbakyan
%T On a Godunov-type numerical scheme for describing the gas and dust components in problems of star formation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 85-97
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a7/
%G ru
%F SJIM_2023_26_1_a7
I. M. Kulikov; I. G. Chernykh; A. F. Sapetina; E. I. Vorobyov; V. G. Elbakyan. On a Godunov-type numerical scheme for describing the gas and dust components in problems of star formation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 85-97. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a7/

[1] E. I. Vorobyov, “Ejection of gaseous clumps from gravitationally unstable protostellar disks”, Astron. Astrophys., 590 (2016), 115 | DOI

[2] E. I. Vorobyov, V. G. Elbakyan, A. L. Plunkett, M. M. Dunham, M. Audard, M. Guedel, O. Dionatos, Knotty protostellar jets as a signature of episodic protostellar accretion?, Astron. Astrophys., 613 (2018), 18 | DOI

[3] E. I. Vorobyov, V. Akimkin, O. P. Stoyanovskaya, Y. Pavlyuchenkov, H. B. Liu, “Early evolution of viscous and self-gravitating circumstellar disks with a dust component”, Astron. Astrophys., 614 (2018), 98 | DOI

[4] E. I. Vorobyov, V. G. Elbakyan, “Gravitational fragmentation and formation of giant protoplanets on orbits of tens of au”, Astron. Astrophys., 618 (2018), 7 | DOI

[5] E. I. Vorobyov, V. G. Elbakyan, K. Omukai, T. Hosokawa, R. Matsukoba, M. Guedel, “Accretion bursts in low-metallicity protostellar disks”, Astron. Astrophys., 641 (2020), 72 | DOI

[6] M. Bate, “Collapse of a molecular cloud core to stellar densities: the formation and evolution of pre-stellar discs”, Monthly Notices Royal Astron. Soc., 417 (2011), 2036–2056 | DOI

[7] I. Kulikov, E. Vorobyov, “Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows”, J. Comput. Phys., 317 (2016), 318–346 | DOI | MR | Zbl

[8] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Mat. sb., 47(89):3 (1959), 271–306 | Zbl

[9] D. Einfeldt, C. Munz, P. Roe, B. Sjoegreen, “On Godunov-type methods near low densities”, J. Comput. Phys., 92 (1991), 273–295 | DOI | MR | Zbl

[10] S. K. Godunov, Y. D. Manuzina, M. A. Nazar'eva, “Experimental analysis of convergence of the numerical solution to a generalized solution in fluid dynamics”, Comput. Math. Math. Phys., 51 (2011), 88–95 | DOI | MR | Zbl

[11] S. K. Godunov, I. M. Kulikov, “Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee”, Comput. Math. Math. Phys., 54:6 (2014), 1012–1024 | DOI | MR | Zbl

[12] S. K. Godunov, V. V. Denisenko, D. V. Klyuchinskii, S. V. Fortova, V. V. Shepelev, “Study of entropy properties of a linearized version of Godunov's method”, Comput. Math. Math. Phys., 60 (2020), 628–640 | DOI | MR | Zbl

[13] G. Gallice, A. Chan, R. Loubere, P. Maire, “Entropy stable and positivity preserving Godunov-type schemes for multidimensional hyperbolic systems on unstructured grid”, J. Comput. Phys., 468 (2022), 111493 | DOI | MR

[14] S. Dellacherie, “Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number”, J. Comput. Phys., 229 (2010), 978–1016 | DOI | MR | Zbl

[15] S. K. Godunov, D. V. Klyuchinskii, S. V. Fortova, V. V. Shepelev, “Experimental studies of difference gas dynamics models with shock waves”, Comput. Math. Math. Phys., 58 (2018), 1201–1216 | DOI | MR | Zbl

[16] S. Chen, J. Li, Z. Li, W. Yuan, Z. Gao, “Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes”, J. Comput. Phys., 456 (2022), 111027 | DOI | MR

[17] M. Sekora, J. Stone, “A hybrid Godunov method for radiation hydrodynamics”, J. Comput. Phys., 229 (2010), 6819–6852 | DOI | MR | Zbl

[18] T. Gardiner, J. Stone, “An unsplit Godunov method for ideal MHD via constrained transport”, J. Comput. Phys., 205 (2005), 509–539 | DOI | MR | Zbl

[19] T. Gardiner, J. Stone, “An unsplit Godunov method for ideal MHD via constrained transport in three dimensions”, J. Comput. Phys., 227 (2008), 4123–4141 | DOI | MR | Zbl

[20] A. Mignone, P. Tzeferacos, “A second-order unsplit Godunov scheme for cell-centered MHD: The CTU GLM scheme”, J. Comput. Phys., 229 (2010), 2117–2138 | DOI | MR | Zbl

[21] I. M. Kulikov, “A low-dissipation numerical scheme based on a piecewise parabolic method on a local stencil for mathematical modeling of relativistic hydrodynamic flows”, Numer. Anal. Appl., 13 (2020), 117–126 | DOI | MR

[22] I. M. Kulikov, “On a modification of the Rusanov solver for the equations of special relativistic magnetic hydrodynamics”, J. Appl. Indust. Math., 14 (2020), 524–531 | DOI | MR | Zbl

[23] S. K. Godunov, S. P. Kiselev, I. M. Kulikov, V. I. Mali, “Numerical and experimental simulation of wave formation during explosion welding”, Proc. Steklov Inst. Math., 281 (2013), 12–26 | DOI | MR | Zbl

[24] A. A. Aganin, N. A. Khismatullina, “UNO modifications of the Godunov method for calculating the dynamics of an elastic-plastic body”, Lobachevskii J. Math., 40 (2019), 256–262 | DOI | MR | Zbl

[25] N. A. Khismatullina, “Calculation of waves in an elastic-plastic body based on ENO modifications of the Godunov method”, Lobachevskii J. Math., 41 (2020), 1228–1234 | DOI | MR | Zbl

[26] A. Barbas, P. Velarde, “Development of a Godunov method for Maxwell's equations with adaptive mesh refinement”, J. Comput. Phys., 300 (2015), 186–201 | DOI | MR | Zbl

[27] J. Moreno, E. Oliva, P. Velarde, “EMcLAW: An unsplit Godunov method for Maxwell's equations including polarization, metals, divergence control and AMR”, Comput. Phys. Comm., 260 (2021), 107268 | DOI | MR

[28] X. Lei, J. Li, “A staggered-projection Godunov-type method for the Baer-Nunziato two-phase model”, J. Comput. Phys., 437 (2021), 110312 | DOI | MR

[29] B. Ghitti, C. Berthon, M. Hoang Le, E. Toro, “A fully well-balanced scheme for the 1D blood flow equations with friction source term”, J. Comput. Phys., 421 (2020), 109750 | DOI | MR

[30] I. Kulikov, “Molecular cloud collapse to stellar densities: Models on moving geodesic vs. Unstructured tetrahedron vs. nested meshes”, J. Phys. Conf. Ser., 2028 (2021), 012001 | DOI

[31] I. Chernykh, E. Vorobyov, V. Elbakyan, I. Kulikov, “The impact of compiler level optimization on the performance of iterative Poisson solver for numerical modeling of protostellar disks”, Comm. Comput. Inform. Sci., 1510 (2021), 415–426 | DOI