Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_1_a6, author = {E. I. Ivashchenko and V. A. Ivashchenko and I. A. Plokhikh and A. P. Mardanov and I. A. Melemchuk and N. K. Pimenov and R. I. Mullyadzhanov}, title = {Parametric rans simulation of cavitation flow in the channel of the control valve cage}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {74--84}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a6/} }
TY - JOUR AU - E. I. Ivashchenko AU - V. A. Ivashchenko AU - I. A. Plokhikh AU - A. P. Mardanov AU - I. A. Melemchuk AU - N. K. Pimenov AU - R. I. Mullyadzhanov TI - Parametric rans simulation of cavitation flow in the channel of the control valve cage JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 74 EP - 84 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a6/ LA - ru ID - SJIM_2023_26_1_a6 ER -
%0 Journal Article %A E. I. Ivashchenko %A V. A. Ivashchenko %A I. A. Plokhikh %A A. P. Mardanov %A I. A. Melemchuk %A N. K. Pimenov %A R. I. Mullyadzhanov %T Parametric rans simulation of cavitation flow in the channel of the control valve cage %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 74-84 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a6/ %G ru %F SJIM_2023_26_1_a6
E. I. Ivashchenko; V. A. Ivashchenko; I. A. Plokhikh; A. P. Mardanov; I. A. Melemchuk; N. K. Pimenov; R. I. Mullyadzhanov. Parametric rans simulation of cavitation flow in the channel of the control valve cage. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 74-84. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a6/
[1] M. Charlton, Cost effective manufacturing and optimal design of X-stream trims for severe service control valves, Thes. dokt. math., Univ. Huddersfield, 2014
[2] N. A. Wedzinga, Design and testing of a 6 inch control valve with a multi-stage anti-cavitation trim, Student Engrg. Fluid Dynamics, Univ. of Twente, Enschede, Overijssel, 2015
[3] T. Asim, M. Charlton, R. Mishra, “CFD based investigations for the design of severe service control valves used in energy systems”, Energy Conversion and Management, 153 (2017), 288–303 | DOI
[4] Z. X. Gao, Y. Yue, J. Y. Wu, J. Y. Li, H. Wu, Z. J. Jin, “The flow and cavitation characteristics of cage-type control valves”, Engrg. Appl. Comput. Fluid Mech., 15:1 (2021), 951–963
[5] Sait proekta Gmsh, https://gmsh.info
[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algorithms, 2017, arXiv: 1707.06347
[7] S. Fujimoto, H. van Hoof, D. Meger, Addressing function approximation error in actor-critic methods, 2018, arXiv: 1802.09477
[8] S. Pope, Turbulent Flows, Cambridge Univ. Press, 2000 | MR | Zbl
[9] M. Arabnejad, A. Amini, M. Farhat, R. Bensow, “Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation”, Internat. J. Multiphase Flow, 119 (2019), 123–143 | DOI | MR
[10] E. Ivashchenko, M. Hrebtov, M. Timoshevskiy, K. Pervunin, R. Mullyadzhanov, “Systematic validation study of an unsteady cavitating flow over a hydrofoil using conditional averaging: LES and PIV”, J. Marine Sci. Engrg., 9:11 (2021), 1193 | DOI
[11] G. H. Schnerr, J. Sauer, “Physical and numerical modeling of unsteady cavitation dynamics”, Proc. Fourth Internat. Conf. Multiphase Flow (New Orleans), v. 1, 2001, 1–12
[12] Sait proekta OpenFOAM, https://www.openfoam.com
[13] R. F. Warming, R. M. Beam, “Upwind second-order difference schemes and applications in aerodynamic flows”, AIAA J., 14:9 (1976), 1241–1249 | DOI | MR | Zbl
[14] H. Jasak, Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows, London, 1996
[15] J. H. Ferziger, M. Peri?c, R. L. Street, Computational Methods for Fluid Dynamics, v. 3, Springer-Verl., 2002, 196–200 | MR
[16] M. Darwish, F. Moukalled, The Finite Volume Method in Computational Fluid Dynamics: an Advanced Introduction with OpenFOAM and Matlab, Springer-Verl., 2021
[17] Sait proekta Ansys Fluent, https://www.ansys.com/products/fluids/ansys-fluent
[18] O. Rybdylova, M. Al Qubeissi, M. Braun, C. Crua, J. Manin, L. M. Pickett, G. De Sercey, E. M. Sazhina, S. S. Sazhin, M. Heikal, “A model for droplet heating and its implementation into ANSYS Fluent”, Internat. Comm. Heat and Mass Transfer, 76 (2016), 265–270 | DOI | MR
[19] D. Borkowski, M. Weigiel, P. Oclón, T. Weigiel, “CFD model and experimental verification of water turbine integrated with electrical generator”, Energy, 185 (2019), 875–883 | DOI
[20] A. H. Araghi, M. Khiadani, M. H. Sadafi, K. Hooman, “A numerical model and experimental verification for analysing a new vacuum spray flash desalinator utilising low grade energy”, Desalination, 413 (2017), 109–118 | DOI
[21] N. Adhikari, A. Alexeenko, “Development and verification of nonequilibrium reacting airflow modeling in ANSYS fluent”, J. Thermophys. Heat Transfer, 36:1 (2022), 118–128 | DOI
[22] A. Kumar, A. Ghobadian, J. Nouri, “Numerical simulation and experimental validation of cavitating flow in a multi-hole diesel fuel injector”, Internat. J. Engine Research, 23:6 (2022), 958–973 | DOI | MR
[23] Y. Long, L. F. Deng, J. Q. Zhang, B. Ji, X. P. Long, “A new method of LES verification and validation for attached turbulent cavitating flow”, J. Hydrodynamics, 33:1 (2021), 170–174 | DOI | MR