Parametric rans simulation of cavitation flow in the channel of the control valve cage
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 74-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cavitation flow in the channel, which is the prototype of the control valve cage, has been studied. The average fields of velocity, pressure, and vapor volume fraction obtained by the RANS method by means of open source CFD software OpenFOAM are in good agreement with the data obtained in the other CFD solve — Ansys Fluent. A computer code was implemented that made it possible to obtain a large number of configurations of the geometry of the control valve cage, for which RANS calculations were carried out in order to form a comprehensive database.
Mots-clés : cavitation, RANS
Keywords: control valve cage. .
@article{SJIM_2023_26_1_a6,
     author = {E. I. Ivashchenko and V. A. Ivashchenko and I. A. Plokhikh and A. P. Mardanov and I. A. Melemchuk and N. K. Pimenov and R. I. Mullyadzhanov},
     title = {Parametric rans simulation of cavitation flow in the channel of the control valve cage},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {74--84},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a6/}
}
TY  - JOUR
AU  - E. I. Ivashchenko
AU  - V. A. Ivashchenko
AU  - I. A. Plokhikh
AU  - A. P. Mardanov
AU  - I. A. Melemchuk
AU  - N. K. Pimenov
AU  - R. I. Mullyadzhanov
TI  - Parametric rans simulation of cavitation flow in the channel of the control valve cage
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 74
EP  - 84
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a6/
LA  - ru
ID  - SJIM_2023_26_1_a6
ER  - 
%0 Journal Article
%A E. I. Ivashchenko
%A V. A. Ivashchenko
%A I. A. Plokhikh
%A A. P. Mardanov
%A I. A. Melemchuk
%A N. K. Pimenov
%A R. I. Mullyadzhanov
%T Parametric rans simulation of cavitation flow in the channel of the control valve cage
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 74-84
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a6/
%G ru
%F SJIM_2023_26_1_a6
E. I. Ivashchenko; V. A. Ivashchenko; I. A. Plokhikh; A. P. Mardanov; I. A. Melemchuk; N. K. Pimenov; R. I. Mullyadzhanov. Parametric rans simulation of cavitation flow in the channel of the control valve cage. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 74-84. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a6/

[1] M. Charlton, Cost effective manufacturing and optimal design of X-stream trims for severe service control valves, Thes. dokt. math., Univ. Huddersfield, 2014

[2] N. A. Wedzinga, Design and testing of a 6 inch control valve with a multi-stage anti-cavitation trim, Student Engrg. Fluid Dynamics, Univ. of Twente, Enschede, Overijssel, 2015

[3] T. Asim, M. Charlton, R. Mishra, “CFD based investigations for the design of severe service control valves used in energy systems”, Energy Conversion and Management, 153 (2017), 288–303 | DOI

[4] Z. X. Gao, Y. Yue, J. Y. Wu, J. Y. Li, H. Wu, Z. J. Jin, “The flow and cavitation characteristics of cage-type control valves”, Engrg. Appl. Comput. Fluid Mech., 15:1 (2021), 951–963

[5] Sait proekta Gmsh, https://gmsh.info

[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algorithms, 2017, arXiv: 1707.06347

[7] S. Fujimoto, H. van Hoof, D. Meger, Addressing function approximation error in actor-critic methods, 2018, arXiv: 1802.09477

[8] S. Pope, Turbulent Flows, Cambridge Univ. Press, 2000 | MR | Zbl

[9] M. Arabnejad, A. Amini, M. Farhat, R. Bensow, “Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation”, Internat. J. Multiphase Flow, 119 (2019), 123–143 | DOI | MR

[10] E. Ivashchenko, M. Hrebtov, M. Timoshevskiy, K. Pervunin, R. Mullyadzhanov, “Systematic validation study of an unsteady cavitating flow over a hydrofoil using conditional averaging: LES and PIV”, J. Marine Sci. Engrg., 9:11 (2021), 1193 | DOI

[11] G. H. Schnerr, J. Sauer, “Physical and numerical modeling of unsteady cavitation dynamics”, Proc. Fourth Internat. Conf. Multiphase Flow (New Orleans), v. 1, 2001, 1–12

[12] Sait proekta OpenFOAM, https://www.openfoam.com

[13] R. F. Warming, R. M. Beam, “Upwind second-order difference schemes and applications in aerodynamic flows”, AIAA J., 14:9 (1976), 1241–1249 | DOI | MR | Zbl

[14] H. Jasak, Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows, London, 1996

[15] J. H. Ferziger, M. Peri?c, R. L. Street, Computational Methods for Fluid Dynamics, v. 3, Springer-Verl., 2002, 196–200 | MR

[16] M. Darwish, F. Moukalled, The Finite Volume Method in Computational Fluid Dynamics: an Advanced Introduction with OpenFOAM and Matlab, Springer-Verl., 2021

[17] Sait proekta Ansys Fluent, https://www.ansys.com/products/fluids/ansys-fluent

[18] O. Rybdylova, M. Al Qubeissi, M. Braun, C. Crua, J. Manin, L. M. Pickett, G. De Sercey, E. M. Sazhina, S. S. Sazhin, M. Heikal, “A model for droplet heating and its implementation into ANSYS Fluent”, Internat. Comm. Heat and Mass Transfer, 76 (2016), 265–270 | DOI | MR

[19] D. Borkowski, M. Weigiel, P. Oclón, T. Weigiel, “CFD model and experimental verification of water turbine integrated with electrical generator”, Energy, 185 (2019), 875–883 | DOI

[20] A. H. Araghi, M. Khiadani, M. H. Sadafi, K. Hooman, “A numerical model and experimental verification for analysing a new vacuum spray flash desalinator utilising low grade energy”, Desalination, 413 (2017), 109–118 | DOI

[21] N. Adhikari, A. Alexeenko, “Development and verification of nonequilibrium reacting airflow modeling in ANSYS fluent”, J. Thermophys. Heat Transfer, 36:1 (2022), 118–128 | DOI

[22] A. Kumar, A. Ghobadian, J. Nouri, “Numerical simulation and experimental validation of cavitating flow in a multi-hole diesel fuel injector”, Internat. J. Engine Research, 23:6 (2022), 958–973 | DOI | MR

[23] Y. Long, L. F. Deng, J. Q. Zhang, B. Ji, X. P. Long, “A new method of LES verification and validation for attached turbulent cavitating flow”, J. Hydrodynamics, 33:1 (2021), 170–174 | DOI | MR