Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_1_a5, author = {A. N. Doludenko and I. V. Kolokolov and V. V. Lebedev and S. V. Fortova}, title = {Numerical investigation of the viscous two-dimensional fluid flow in a closed cell}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {65--73}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a5/} }
TY - JOUR AU - A. N. Doludenko AU - I. V. Kolokolov AU - V. V. Lebedev AU - S. V. Fortova TI - Numerical investigation of the viscous two-dimensional fluid flow in a closed cell JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 65 EP - 73 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a5/ LA - ru ID - SJIM_2023_26_1_a5 ER -
%0 Journal Article %A A. N. Doludenko %A I. V. Kolokolov %A V. V. Lebedev %A S. V. Fortova %T Numerical investigation of the viscous two-dimensional fluid flow in a closed cell %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 65-73 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a5/ %G ru %F SJIM_2023_26_1_a5
A. N. Doludenko; I. V. Kolokolov; V. V. Lebedev; S. V. Fortova. Numerical investigation of the viscous two-dimensional fluid flow in a closed cell. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 65-73. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a5/
[1] R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence”, Phys. Fluids, 10:7 (1967), 1417–1423 | DOI
[2] J. Sommeria, “Experimental study of the two-dimensional inverse energy cascade in a square box”, J. Fluid Mech., 170:2 (1986), 139–168 | DOI
[3] G. Boffetta, A. Celani, M. Vergassola, “Inverse energy cascade in two-dimensional turbulence: deviations from Gaussian behavior”, Phys. Rev. E. Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., 61:1 (2000) | DOI
[4] A. V. Orlov, M. Y. Brazhnikov, A. A. Levchenko, “Large-Scale coherent vortex formation in two-dimensional turbulence”, JETP Lett., 107:3 (2018), 157–162 | DOI
[5] R. Maccormack, “The effect of viscosity in hypervelocity impact cratering”, 4 Aerodynamic Test. Conf. (Cincinnati, 1969) | DOI
[6] M. S. Apfelbaum, A. N. Doludenko, “Hydrodynamic characteristics of weakly conductive liquid media in the non-uniform electric field”, Math. Montisnigri, 45 (2019), 74–84 | DOI | MR | Zbl
[7] A. N. Doludenko et al, “Numerical simulation of the Rayleigh-Taylor instability of inviscid and viscous fluid”, Phys. Scripta, 94:9 (2019) | DOI
[8] A. N. Doludenko et al, “Coherent vortex in a spatially restricted two-dimensional turbulent flow in absence of bottom friction”, Phys. Fluids, 33:1 (2021) | DOI
[9] D. Anderson, J. C. Tannehill, R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Roca Raton, 2016 | MR
[10] H. Xia et al, “Turbulence-condensate interaction in two dimensions”, Phys. Rev. Lett., 101:19 (2008), 4504 | DOI