Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_1_a15, author = {O. A. Solnyshkina and N. B. Fatkullina and A. Z. Bulatova and V. N. Kireev and A. R. Bilyalov and I. Sh. Akhatov and V. N. Pavlov}, title = {Numerical approach for simulation of geometry variation during sintering of ceramics based on the finite element method}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {179--190}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a15/} }
TY - JOUR AU - O. A. Solnyshkina AU - N. B. Fatkullina AU - A. Z. Bulatova AU - V. N. Kireev AU - A. R. Bilyalov AU - I. Sh. Akhatov AU - V. N. Pavlov TI - Numerical approach for simulation of geometry variation during sintering of ceramics based on the finite element method JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 179 EP - 190 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a15/ LA - ru ID - SJIM_2023_26_1_a15 ER -
%0 Journal Article %A O. A. Solnyshkina %A N. B. Fatkullina %A A. Z. Bulatova %A V. N. Kireev %A A. R. Bilyalov %A I. Sh. Akhatov %A V. N. Pavlov %T Numerical approach for simulation of geometry variation during sintering of ceramics based on the finite element method %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 179-190 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a15/ %G ru %F SJIM_2023_26_1_a15
O. A. Solnyshkina; N. B. Fatkullina; A. Z. Bulatova; V. N. Kireev; A. R. Bilyalov; I. Sh. Akhatov; V. N. Pavlov. Numerical approach for simulation of geometry variation during sintering of ceramics based on the finite element method. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 179-190. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a15/
[1] I. Gibson, D. Rosen, B. Stucker, M. Khorasani, Additive Manufacturing Technologies, Springer Nature, 2021 | DOI
[2] Z. Chen, Z. Li, J. Li, Ch. Liu, Ch. Lao, Fu Y, Liu Ch, Li Yang, P. Wang, Y. He, “3D printing of ceramics: A review”, J. Europ. Ceram. Soc., 39 (2019), 661–687 | DOI
[3] M. N. Rahaman, Sintering of Ceramics, Taylor and Francis Group, Boca Raton, 2008 | DOI
[4] J. Jhabvala, E. Boillat, R. Glardon, “Study of the inter-particle necks in selective laser sintering”, Rapid Prototyping J., 19:2 (2013), 111–117 | DOI
[5] H. H. Kart, G. Wang, I. Karaman, T. Cagin, “Molecular dynamics study of the coalescence of equal and unequal sized Cu nanoparticles”, Internat. J. Modern Phys., 2009, 179–196 | DOI | Zbl
[6] R. Singh, V. Sharma, “Nano tungsten carbide interactions and mechanical behaviour during sintering: A molecular dynamics study”, Comput. Materials Sci., 197 (2021), 110653 | DOI
[7] A. Liang, C. Liu, P. S. Branicio, “Hot-press sintering of aluminum nitride nanoceramics”, Phys. Rev. Materials, 5 (2021), 096001 | DOI
[8] S. Nosewicz, J. Rojek, K. Pietrzak, M. Chmielewski, “Viscoelastic discrete element model of powder sintering”, Powder Technology, 246 (2013), 157–168 | DOI
[9] F. B. Sweidan, H. J. Ryu, “Kinetic Monte Carlo simulations of the sintering microstructural evolution in density graded stainless steel fabricated by SPS”, Materials Today Communications, 26 (2021), 101863 | DOI
[10] Y. Liu, M. Militzer, M. Perez, “Phase field modelling of abnormal grain growth”, Materials, 12 (2019), 4048 | DOI
[11] G. A. L. Van de Vorst, R. M. M. Mattheij, H. K. Kuiken, “A boundary element solution for two-dimensional viscous sintering”, J. Comput. Phys., 100 (1992), 50–63 | DOI | Zbl
[12] V. V. Skorohod, Rheological Basis of the Theory of Sintering, Naukova Dumka, Kiev, 1972 | DOI | MR
[13] A. Van der Laan, R. Epherre, G. Chevallier, Y. Beynet, A. Weibel, C. Estourn, “Fully coupled electrothermal and mechanical simulation of the production of complex shapes by spark plasma sintering”, J. Europ. Ceram. Soc., 41:7 (2021), 4252–4263 | DOI
[14] E. A. Olevsky, “Theory of sintering: from discrete to continuum”, Mater. Sci. Engrg. R. Rep., 23 (1998), 41–100 | DOI
[15] E. A. Olevsky, S. Kandukuri, L. Froyen, “Consolidation enhancement in spark-plasma sintering: Impact of high heating rates”, J. Appl. Phys., 102 (2007), 114913 | DOI
[16] C. Maniere, C. Harnois, S. Marinel, “3D printing of porcelain and finite element simulation of sintering affected by final stage pore gas pressure”, Materials Today Communications, 26 (2021), 102063 | DOI
[17] R. M. German, Sintering Theory and Practice, Wiley, 1996
[18] A. Safronov, S. Chugunov, A. Tikhonov, M. Gusev, I. Akhatov, “Numerical simulation of sintering for 3D-printed ceramics via SOVS model”, Ceram. Internat., 45 (2019), 19027–19035 | DOI
[19] P. M. Raj, W. R. Cannon, “Anisotropic shrinkage in tape-cast alumina: role of processing parameters and particle shape”, J. Amer. Ceram. Soc., 82 (1999), 2619 | DOI
[20] E. A. Olevsky, B. Kushnarev, A. Maximenko, V. Tikare, M. Braginsky, “Modelling of anisotropic sintering in crystalline ceramics”, Philosophical J., 85:9 (2005), 2123–2146 | DOI
[21] ASTM Standard Standard test method for flexural strength of advanced ceramics at ambient temperature, 2018 www.astm.org | DOI
[22] N. C. Van, S. K. Sistla, K. S. Van, N. A. Giang, A. Bezold, C. Broeckmann, F. Lange, “A comparative study of different sintering models for Al$_2$O$_3$”, J. Ceram. Soc. Japan, 124 (2016), 301–312 | DOI