Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_1_a14, author = {I. E. Svetov and A. P. Polyakova}, title = {Decomposition of symmetric tensor fields in $\mathbb{R}^3$}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {161--178}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a14/} }
TY - JOUR AU - I. E. Svetov AU - A. P. Polyakova TI - Decomposition of symmetric tensor fields in $\mathbb{R}^3$ JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 161 EP - 178 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a14/ LA - ru ID - SJIM_2023_26_1_a14 ER -
I. E. Svetov; A. P. Polyakova. Decomposition of symmetric tensor fields in $\mathbb{R}^3$. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 161-178. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a14/
[1] S. J. Norton, “Tomographic reconstruction of 2-D vector fields: application to flow imaging”, Geophys. J. Internat., 97:1 (1989), 161–168 | DOI | Zbl
[2] H. Braun, A. Hauck, “Tomographic reconstruction of vector fields”, IEEE Trans. Signal Processing, 39:2 (1991), 464–471 | DOI | Zbl
[3] G. Sparr, K. Strahlen, K. Lindstrem, H. W. Persson, “Doppler tomography for vector fields”, Inverse Problems, 11:5 (1995), 1051–1061 | DOI | MR | Zbl
[4] M. Defrise, G. T. Gullberg, 3D reconstruction of tensors and vectors, Technical Report. N LBNL-54936, LBNL, Berkeley, 2005
[5] T. Schuster, “20 years of imaging in vector field tomography: a review”, Math. Meth. Biomedical Imaging and Intensity-Modulated Dariation Therapy (IMRT), Birkhauser, Basel, 2008, 389–424 | MR
[6] S. G. Kazantsev, A. A. Bukhgeim, “Inversion of the scalar and vector attenuated x-ray transforms in a unit disc”, J. Inverse Ill-Posed Probl., 15:7 (2007), 735–765 | DOI | MR | Zbl
[7] A. Tamasan, “Tomographic reconstruction of vector fields in variable background media”, Inverse Problems, 23:5 (2007), 2197–2205 | DOI | MR | Zbl
[8] G. Ainsworth, “The attenuated magnetic ray transform on surfaces”, Inverse Probl. Imaging, 7:1 (2013), 27–46 | DOI | MR | Zbl
[9] I. E. Svetov, E. Yu. Derevtsov, Yu. S. Volkov, T. Schuster, “A numerical solver based on B-splines for 2D vector field tomography in a refracting medium”, Math. Comput. Simul., 97 (2014), 207–223 | DOI | MR | Zbl
[10] F. Monard, “Inversion of the attenuated geodesic X-ray transform over functions and vector fields on simple surfaces”, SIAM J. Math. Anal., 48:2 (2016), 1155–1177 | DOI | MR
[11] V. A. Sharafutdinov, Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993
[12] A. Puro, “Magneto-photoelasticity as parametric tensor field tomography”, Inverse Problems, 14:5 (1998), 1315–1330 | DOI | Zbl
[13] V. Sharafutdinov, “The linearized problem of magneto-photoelasticity”, Inverse Probl. Imaging, 8:1 (2014), 247–257 | DOI | MR | Zbl
[14] H. K. Aben, S. J. Idnurm, J. Josepson, K. J. E. Kell, A. E. Puro, “Optical tomography of stress tensor field”, Analytical Meth. Optical Tomography, Proc. SPIE, 1843, 1991, 220–229 | DOI
[15] A. E. Puro, D. D. Karov, “Tenzornaya tomografiya ostatochnykh napryazhenii”, Optika i spektroskopiya, 103:4 (2007), 698–703
[16] W. Lionheart, P. Withers, “Diffraction tomography of strain”, Inverse Problems, 31:4. Article (2015) | DOI | MR | Zbl
[17] V. P. Karasev, “Polyarizatsionnaya tomografiya kvantovogo izlucheniya: teoreticheskie aspekty. Operatornyi podkhod”, Teor. i mat. fizika, 145:3 (2005), 344–357 | DOI | MR | Zbl
[18] W. Tao, D. Rohmer, G. T. Gullberg, Y. Seo, Q. Huang, “An Analytical Algorithm for Tensor Tomography From Projections Acquired About Three Axes”, IEEE Trans. Medical Imaging, 41:11 (2022), 3454–3472 | DOI
[19] E. Yu. Derevtsov, I. E. Svetov, “Tomography of tensor fields in the plain”, Eurasian J. Math. Comput. Appl., 3:2 (2015), 24–68
[20] H. Weyl, “The method of ortogonal projection in potential theory”, Duke Math. J., 7:1 (1940), 411–444 | DOI | MR | Zbl
[21] E. Yu. Derevtsov, I. G. Kashina, “Chislennoe reshenie zadachi vektornoi tomografii s pomoschyu polinomialnykh bazisov”, Sib. zhurn. vychisl. mat., 5:3 (2002), 233–254 | Zbl
[22] E. Yu. Derevtsov, I. G. Kashina, “Priblizhennoe reshenie zadachi rekonstruktsii tenzornogo polya vtoroi valentnosti s pomoschyu polinomialnykh bazisov”, Sib. zhurn. industr. matematiki, 5:1 (2002), 39–62 | MR | Zbl
[23] I. E. Svetov, A. P. Polyakova, “Vosstanovlenie 2-tenzornykh polei, zadannykh v edinichnom kruge, po ikh luchevym preobrazovaniyam na osnove MNK s ispolzovaniem B-splainov”, Sib. zhurn. industr. matematiki, 13:2 (2010), 183–199 | Zbl
[24] E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, J. Inverse Ill-Posed Probl., 19:4-5 (2011), 689–715 | DOI | MR | Zbl
[25] E. Yu. Derevtsov, A. P. Polyakova, “Reshenie zadachi integralnoi geometrii 2-tenzornykh polei metodom singulyarnogo razlozheniya”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 12:3 (2012), 73–94 | Zbl
[26] I. E. Svetov, A. P. Polyakova, “Priblizhennoe reshenie zadachi dvumernoi 2-tenzornoi tomografii s ispolzovaniem usechennogo singulyarnogo razlozheniya”, Sib. elektron. mat. izv., 12 (2015), 480–499 | DOI | MR | Zbl
[27] E. Yu. Derevtsov, A. K. Louis, S. V. Maltseva, A. P. Polyakova, I. E. Svetov, “Numerical solvers based on the method of approximate inverse for 2D vector and 2-tensor tomography problems”, Inverse Problems, 33:12 (2017), 124001 | DOI | MR | Zbl
[28] I. E. Svetov, A. P. Polyakova, S. V. Maltseva, “Metod priblizhennogo obrascheniya dlya operatorov luchevykh preobrazovanii, deistvuyuschikh na dvumernye simmetrichnye $m$-tenzornye polya”, Sib. zhurn. industr. matematiki, 22:1 (2019), 104–115 | DOI | MR | Zbl
[29] A. P. Polyakova, “Vosstanovlenie vektornogo polya v share po ego normalnomu preobrazovaniyu Radona”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 13:4 (2013), 119–142 | Zbl
[30] I. E. Svetov, “Metod priblizhennogo obrascheniya dlya operatorov preobrazovaniya Radona funktsii i normalnogo preobrazovaniya Radona vektornykh i simmetrichnykh 2-tenzornykh polei v $\mathbb{R}^3$”, Sib. elektron. mat. izv., 17 (2020), 1073–1087 | DOI | MR | Zbl
[31] A. P. Polyakova, “Singular value decomposition of a normal Radon transform operator acting on 3D symmetric 2-tensor fields”, Sib. elektron. mat. izv., 18:2 (2021), 1572–1595 | DOI | MR | Zbl
[32] N. E. Kochin, Vektornoe ischislenie i nachala tenzornogo ischisleniya, Nauka, M., 1965 | MR
[33] E. B. Bykhovskii, N. V. Smirnov, “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno summiruemykh po zadannoi oblasti, i operatorakh vektornogo analiza”, Tr. MIAN SSSR, 59 (1960), 5–36
[34] V. Girault, P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verl., Berlin, 1986 | DOI | MR | Zbl
[35] W. Borchers, H. Sohr, “On the equations rot v = g and div u = f with zero boundary conditions”, Hokkaido Math. J., 19 (1990), 67–87 | DOI | MR | Zbl
[36] G. E. Backus, “Poloidal and toroidal fields in geomagnetic field modeling”, Rev. Geophysics, 24:1 (1986), 75–109 | DOI | MR
[37] S. G. Kazantsev, V. B. Kardakov, “Poloidalno-toroidalnoe razlozhenie solenoidalnykh vektornykh polei v share”, Sib. zhurn. industr. matematiki, 22:3 (2019), 74–95 | DOI | Zbl