Decomposition of symmetric tensor fields in $\mathbb{R}^3$
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 161-178

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, we introduce generalizations of the curl operator acting on three-dimensional symmetric $m$-tensor fields and establish properties of them. For the spaces of three-dimensional tensor fields, new detailed decompositions are obtained. Each term in the decompositions is constructed using of one function. Decompositions of this kind play a special role, in particular, in the study of tomographic integral operators acting on symmetric $m$-tensor fields, $m\geqslant1$, and in the construction of algorithms for solving the emerging inverse problems.
Keywords: decomposition of symmetric tensor field, solenoidal field, potential field, potential, curl operator, computerized tomography, ray transform
Mots-clés : Radon transform. .
@article{SJIM_2023_26_1_a14,
     author = {I. E. Svetov and A. P. Polyakova},
     title = {Decomposition of symmetric tensor fields in $\mathbb{R}^3$},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {161--178},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a14/}
}
TY  - JOUR
AU  - I. E. Svetov
AU  - A. P. Polyakova
TI  - Decomposition of symmetric tensor fields in $\mathbb{R}^3$
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 161
EP  - 178
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a14/
LA  - ru
ID  - SJIM_2023_26_1_a14
ER  - 
%0 Journal Article
%A I. E. Svetov
%A A. P. Polyakova
%T Decomposition of symmetric tensor fields in $\mathbb{R}^3$
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 161-178
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a14/
%G ru
%F SJIM_2023_26_1_a14
I. E. Svetov; A. P. Polyakova. Decomposition of symmetric tensor fields in $\mathbb{R}^3$. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 161-178. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a14/