Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_1_a12, author = {V. G. Romanov and T.V. Bugueva}, title = {Inverse problem for wave equation with polynomial nonlinearity}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {142--149}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a12/} }
TY - JOUR AU - V. G. Romanov AU - T.V. Bugueva TI - Inverse problem for wave equation with polynomial nonlinearity JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 142 EP - 149 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a12/ LA - ru ID - SJIM_2023_26_1_a12 ER -
V. G. Romanov; T.V. Bugueva. Inverse problem for wave equation with polynomial nonlinearity. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 142-149. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a12/
[1] Y. Kurylev, M. Lassas, G. Uhlmann, “Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations”, Invent. Math., 212 (2018), 781–857 ; (20 Sep 2017), arXiv: 1405.3386v4 [math.DG] | DOI | MR | Zbl | Zbl
[2] M. Lassas, G. Uhlmann, Y. Wang, “Inverse problems for semilinear wave equations on Lorentzian manifolds”, Commun. Math. Phys., 360 (2018), 555–609 ; (20 Jun 2016), arXiv: 1606.06261v1 [math.AP] | DOI | MR | Zbl
[3] M. Lassas, “Inverse problems for linear and non-linear hyperbolic equations”, Proc. Internat. Congress Math., v. 3, 2018, 3739–3760 | MR
[4] Y. Wang, T. Zhou, “Inverse problems for quadratic derivative nonlinear wave equations”, Commun. Partial Differ. Equ., 44:11 (2019), 1140–1158 | DOI | MR | Zbl
[5] P. Hintz, G. Uhlmann, “Reconstruction of Lorentzian manifolds from boundary light observation sets”, Internat. Math. Res. Notices, 22 (2019), 6949–6987 ; (27 May 2020), arXiv: 1705.01215v2 [math.DG] | DOI | MR | Zbl | Zbl
[6] A. S. Barreto, “Interactions of semilinear progressing waves in two or more space dimensions”, Inverse Probl. Imaging., 14:6 (2020), 1057–1105 ; (29 Jan 2020), arXiv: 2001.11061v1 [math.AP] | DOI | MR | Zbl
[7] G. Uhlmann, J. Zhai, “On an inverse boundary value problem for a nonlinear elastic wave equation”, J. Math. Pures Appl., 153 (2021), 114–136 | DOI | MR | Zbl
[8] A. S. Barreto, P. Stefanov, Recovery of a general nonlinearity in the semilinear wave equation, 18 Jul 2021, arXiv: 2107.08513v1 [math.AP]
[9] P. Hintz, G. Uhlmann, L. J. Zhai, The Dirichlet-to-Neumann map for a semilinear wavevequation on Lorentzian manifolds, 15 Mar 2021, arXiv: 2103.08110v1 [math.AP] | MR
[10] A. S. Barreto, P. Stefanov, “Recovery of a cubic non-linearity in the wave equation in the weakly non-linear regime”, Commun. Math. Phys., 392 (2022), 25–53 | DOI | MR | Zbl
[11] V. G. Romanov, T. V. Bugueva, “Obratnaya zadacha dlya nelineinogo volnovogo uravneniya”, Sib. zhurn. industr. matematiki, 25:2 (2022), 83–100
[12] V. G. Romanov, T. V. Bugueva, “Zadacha ob opredelenii koeffitsienta pri nelineinom chlene kvazilineinogo volnovogo uravneniya”, Sib. zhurn. industr. matematiki, 25:3 (2022), 154–169 | MR
[13] V. G. Romanov, “Obratnaya zadacha dlya polulineinogo volnovogo uravneniya”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 504:1 (2022), 36–41 | Zbl
[14] F. Natterer, The Mathematics of Computerized Tomography, J. Wiley Sons, N.Y., 1986 | MR | Zbl
[15] M. E. Davison, “A singular value decomposition for the Radon transform in n-dimensional Euclidean space”, Numer. Funct. Anal. Optimiz., 3 (1981), 321–340 | DOI | MR | Zbl
[16] V. V. Pikalov, N. G. Preobrazhenskii, “Vychislitelnaya tomografiya i fizicheskii eksperiment”, Uspekhi fiz. nauk, 141:3 (1983), 469–498 | DOI
[17] S. R. Deans, The Radon Transform and Some of Its Applications, J. Wiley Sons, N. Y., 1983 | MR | Zbl
[18] A. K. Louis, “Orthogonal function series expansions and the null space of the Radon transform”, SIAM J. Math. Anal., 15:3 (1984), 621–633 | DOI | MR | Zbl
[19] A. K. Louis, “Incomplete data problems in x-ray computerized tomography”, Numer. Math., 48:3 (1986), 251–262 | DOI | MR | Zbl
[20] A. N. Tikhonov, V. Ya. Arsenin, A. A. Timonov, Matematicheskie zadachi kompyuternoi tomografii, Nauka, M., 1987 | MR
[21] A. G. Michette, C. J. Buckley, X-Ray Science, Technology, Taylor Francis, N.J., 1993
[22] V. M. Boiko, A. M. Orishich, A. A. Pavlov, V. V. Pikalov, Metody opticheskoi diagnostiki v aero fizicheskom eksperimente, izd. NGU, Novosibirsk, 2009
[23] E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, J. Inverse Ill-Posed Probl., 19:4-5 (2011), 689–715 | DOI | MR | Zbl
[24] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, “Integrodifferentsialnyi indikator dlya zadachi odnorakursnoi tomografii”, Sib. zhurn. industr. matem., 17:2 (2014), 3–10 | Zbl
[25] R. Liu, H. Yu, H. Yu, “Singular value decomposition-based 2D image reconstruction for computed tomography”, J. XRay Sci. Technol., 25:1 (2016), 1–22 | DOI
[26] L. Borg, J. Frikel, J. S. Orgensen, E. T. Quinto, Analyzing reconstruction artifacts from arbitrary incomplete X-ray CT data, 26 Jun 2018, arXiv: 1707.03055v4 [math.FA] | MR
[27] Y. Xu, H. Yu, A. Sushmit, Q. Lyu, G. Wang, Y. Li, X. CAO, J. S. Maltz, “Cardiac CT motion artifact grading via semi-automatic labeling and vessel tracking using synthetic image-augmented training data”, J. XRay Sci. Technol., 30:3 (2022), 433–445 | DOI
[28] V. A. Sharafutdinov, “Ob opredelenii opticheskogol tela, raspolozhennogo v odnorodnoi srede, po ego izobrazheniyam”, Matematicheskie metody dlya resheniya pryamykh i obratnykh zadach geofiziki, izd. VTs SO AN SSSR, Novosibirsk, 1981, 123–148