Inverse problem for wave equation with polynomial nonlinearity
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 142-149

Voir la notice de l'article provenant de la source Math-Net.Ru

For a wave equation containing nonlinearity in the form of a $n$-th order polynomial, the problem of determining the coefficients of the polynomial depending on the variable $x\in \mathbb{R}^3$ is studied. Plane waves propagating with a sharp front in a homogeneous medium in the direction of a unit vector $\boldsymbol\nu$ and falling on inhomogeneity localized inside some ball $B(R)$ are considered. It is assumed that the solutions of forward problems for all possible $\nu$ can be measured at points of the boundary of this ball at time close to the arrival of the wave front. It is shown that the solution of the inverse problem is reduced to a series of X-ray tomography problems.
Keywords: semilinear wave equation, inverse problem, plane waves, X-ray tomography, uniqueness. .
@article{SJIM_2023_26_1_a12,
     author = {V. G. Romanov and T.V. Bugueva},
     title = {Inverse problem for wave equation with polynomial nonlinearity},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {142--149},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a12/}
}
TY  - JOUR
AU  - V. G. Romanov
AU  - T.V. Bugueva
TI  - Inverse problem for wave equation with polynomial nonlinearity
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 142
EP  - 149
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a12/
LA  - ru
ID  - SJIM_2023_26_1_a12
ER  - 
%0 Journal Article
%A V. G. Romanov
%A T.V. Bugueva
%T Inverse problem for wave equation with polynomial nonlinearity
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 142-149
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a12/
%G ru
%F SJIM_2023_26_1_a12
V. G. Romanov; T.V. Bugueva. Inverse problem for wave equation with polynomial nonlinearity. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 142-149. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a12/