Inverse problem for wave equation with polynomial nonlinearity
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 142-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a wave equation containing nonlinearity in the form of a $n$-th order polynomial, the problem of determining the coefficients of the polynomial depending on the variable $x\in \mathbb{R}^3$ is studied. Plane waves propagating with a sharp front in a homogeneous medium in the direction of a unit vector $\boldsymbol\nu$ and falling on inhomogeneity localized inside some ball $B(R)$ are considered. It is assumed that the solutions of forward problems for all possible $\nu$ can be measured at points of the boundary of this ball at time close to the arrival of the wave front. It is shown that the solution of the inverse problem is reduced to a series of X-ray tomography problems.
Keywords: semilinear wave equation, inverse problem, plane waves, X-ray tomography, uniqueness. .
@article{SJIM_2023_26_1_a12,
     author = {V. G. Romanov and T.V. Bugueva},
     title = {Inverse problem for wave equation with polynomial nonlinearity},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {142--149},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a12/}
}
TY  - JOUR
AU  - V. G. Romanov
AU  - T.V. Bugueva
TI  - Inverse problem for wave equation with polynomial nonlinearity
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 142
EP  - 149
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a12/
LA  - ru
ID  - SJIM_2023_26_1_a12
ER  - 
%0 Journal Article
%A V. G. Romanov
%A T.V. Bugueva
%T Inverse problem for wave equation with polynomial nonlinearity
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 142-149
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a12/
%G ru
%F SJIM_2023_26_1_a12
V. G. Romanov; T.V. Bugueva. Inverse problem for wave equation with polynomial nonlinearity. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 142-149. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a12/

[1] Y. Kurylev, M. Lassas, G. Uhlmann, “Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations”, Invent. Math., 212 (2018), 781–857 ; (20 Sep 2017), arXiv: 1405.3386v4 [math.DG] | DOI | MR | Zbl | Zbl

[2] M. Lassas, G. Uhlmann, Y. Wang, “Inverse problems for semilinear wave equations on Lorentzian manifolds”, Commun. Math. Phys., 360 (2018), 555–609 ; (20 Jun 2016), arXiv: 1606.06261v1 [math.AP] | DOI | MR | Zbl

[3] M. Lassas, “Inverse problems for linear and non-linear hyperbolic equations”, Proc. Internat. Congress Math., v. 3, 2018, 3739–3760 | MR

[4] Y. Wang, T. Zhou, “Inverse problems for quadratic derivative nonlinear wave equations”, Commun. Partial Differ. Equ., 44:11 (2019), 1140–1158 | DOI | MR | Zbl

[5] P. Hintz, G. Uhlmann, “Reconstruction of Lorentzian manifolds from boundary light observation sets”, Internat. Math. Res. Notices, 22 (2019), 6949–6987 ; (27 May 2020), arXiv: 1705.01215v2 [math.DG] | DOI | MR | Zbl | Zbl

[6] A. S. Barreto, “Interactions of semilinear progressing waves in two or more space dimensions”, Inverse Probl. Imaging., 14:6 (2020), 1057–1105 ; (29 Jan 2020), arXiv: 2001.11061v1 [math.AP] | DOI | MR | Zbl

[7] G. Uhlmann, J. Zhai, “On an inverse boundary value problem for a nonlinear elastic wave equation”, J. Math. Pures Appl., 153 (2021), 114–136 | DOI | MR | Zbl

[8] A. S. Barreto, P. Stefanov, Recovery of a general nonlinearity in the semilinear wave equation, 18 Jul 2021, arXiv: 2107.08513v1 [math.AP]

[9] P. Hintz, G. Uhlmann, L. J. Zhai, The Dirichlet-to-Neumann map for a semilinear wavevequation on Lorentzian manifolds, 15 Mar 2021, arXiv: 2103.08110v1 [math.AP] | MR

[10] A. S. Barreto, P. Stefanov, “Recovery of a cubic non-linearity in the wave equation in the weakly non-linear regime”, Commun. Math. Phys., 392 (2022), 25–53 | DOI | MR | Zbl

[11] V. G. Romanov, T. V. Bugueva, “Obratnaya zadacha dlya nelineinogo volnovogo uravneniya”, Sib. zhurn. industr. matematiki, 25:2 (2022), 83–100

[12] V. G. Romanov, T. V. Bugueva, “Zadacha ob opredelenii koeffitsienta pri nelineinom chlene kvazilineinogo volnovogo uravneniya”, Sib. zhurn. industr. matematiki, 25:3 (2022), 154–169 | MR

[13] V. G. Romanov, “Obratnaya zadacha dlya polulineinogo volnovogo uravneniya”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 504:1 (2022), 36–41 | Zbl

[14] F. Natterer, The Mathematics of Computerized Tomography, J. Wiley Sons, N.Y., 1986 | MR | Zbl

[15] M. E. Davison, “A singular value decomposition for the Radon transform in n-dimensional Euclidean space”, Numer. Funct. Anal. Optimiz., 3 (1981), 321–340 | DOI | MR | Zbl

[16] V. V. Pikalov, N. G. Preobrazhenskii, “Vychislitelnaya tomografiya i fizicheskii eksperiment”, Uspekhi fiz. nauk, 141:3 (1983), 469–498 | DOI

[17] S. R. Deans, The Radon Transform and Some of Its Applications, J. Wiley Sons, N. Y., 1983 | MR | Zbl

[18] A. K. Louis, “Orthogonal function series expansions and the null space of the Radon transform”, SIAM J. Math. Anal., 15:3 (1984), 621–633 | DOI | MR | Zbl

[19] A. K. Louis, “Incomplete data problems in x-ray computerized tomography”, Numer. Math., 48:3 (1986), 251–262 | DOI | MR | Zbl

[20] A. N. Tikhonov, V. Ya. Arsenin, A. A. Timonov, Matematicheskie zadachi kompyuternoi tomografii, Nauka, M., 1987 | MR

[21] A. G. Michette, C. J. Buckley, X-Ray Science, Technology, Taylor Francis, N.J., 1993

[22] V. M. Boiko, A. M. Orishich, A. A. Pavlov, V. V. Pikalov, Metody opticheskoi diagnostiki v aero fizicheskom eksperimente, izd. NGU, Novosibirsk, 2009

[23] E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, J. Inverse Ill-Posed Probl., 19:4-5 (2011), 689–715 | DOI | MR | Zbl

[24] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, “Integrodifferentsialnyi indikator dlya zadachi odnorakursnoi tomografii”, Sib. zhurn. industr. matem., 17:2 (2014), 3–10 | Zbl

[25] R. Liu, H. Yu, H. Yu, “Singular value decomposition-based 2D image reconstruction for computed tomography”, J. XRay Sci. Technol., 25:1 (2016), 1–22 | DOI

[26] L. Borg, J. Frikel, J. S. Orgensen, E. T. Quinto, Analyzing reconstruction artifacts from arbitrary incomplete X-ray CT data, 26 Jun 2018, arXiv: 1707.03055v4 [math.FA] | MR

[27] Y. Xu, H. Yu, A. Sushmit, Q. Lyu, G. Wang, Y. Li, X. CAO, J. S. Maltz, “Cardiac CT motion artifact grading via semi-automatic labeling and vessel tracking using synthetic image-augmented training data”, J. XRay Sci. Technol., 30:3 (2022), 433–445 | DOI

[28] V. A. Sharafutdinov, “Ob opredelenii opticheskogol tela, raspolozhennogo v odnorodnoi srede, po ego izobrazheniyam”, Matematicheskie metody dlya resheniya pryamykh i obratnykh zadach geofiziki, izd. VTs SO AN SSSR, Novosibirsk, 1981, 123–148