Analytical solution of the problem on collapse of an attached cavity after cavitation impact of a circular disk
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 118-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the axisymmetric problem of the vertical separation impact of a circular disk that hermetically closes the bottom of a pool in the form of a layer. After the impact, the disk moves along the gravity vector (outside the layer) at a constant speed. In this case, it is assumed that the disc slides along the solid cylindrical walls like a piston. A feature of this problem is that after the impact, an attached cavity is formed and a new internal free boundary of the fluid appears. It is required to study the process of collapse of the cavity at low velocities of the disk, which correspond to small Froude numbers. In the leading asymptotic approximation, a problem with one-sided constraints is formulated, on the basis of which the dynamics of the separation line is determined and the process of collapse of the cavity is described taking into account the rise of the internal free boundary of the liquid. Using the method of separating variables in cylindrical coordinates and the technique of paired integral equations, this problem is reduced to a coupled nonlinear problem that includes a transcendental equation for determining the radius of a circular separation line and a Fredholm integral equation of the second kind with a smooth kernel. A good agreement of analytical results obtained for a large layer thickness with direct numerical calculations is shown.
Keywords: ideal incompressible fluid, round disk, separation impact, analytical solution, dynamics of the separation line, collapse of the cavity, Froude number, cavitation number. .
@article{SJIM_2023_26_1_a10,
     author = {M. V. Norkin},
     title = {Analytical solution of the problem on collapse of an attached cavity after cavitation impact of a circular disk},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {118--131},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a10/}
}
TY  - JOUR
AU  - M. V. Norkin
TI  - Analytical solution of the problem on collapse of an attached cavity after cavitation impact of a circular disk
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 118
EP  - 131
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a10/
LA  - ru
ID  - SJIM_2023_26_1_a10
ER  - 
%0 Journal Article
%A M. V. Norkin
%T Analytical solution of the problem on collapse of an attached cavity after cavitation impact of a circular disk
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 118-131
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a10/
%G ru
%F SJIM_2023_26_1_a10
M. V. Norkin. Analytical solution of the problem on collapse of an attached cavity after cavitation impact of a circular disk. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 118-131. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a10/

[1] L. I. Sedov, Ploskie zadachi gidrodinamiki i aerodinamiki, Nauka, M., 1966 | MR

[2] M. V. Norkin, “Dvizhenie pryamougolnogo tsilindra v zhidkosti posle udara na malykh vremenakh s obrazovaniem kaverny”, Sib. zhurn. industr. matematiki, 23:2 (2020), 106–118 | DOI | Zbl

[3] M. V. Norkin, “Dinamika tochek otryva pri udare plavayuschego krugovogo tsilindra”, Prikl. mekhanika i tekhn. fizika, 60:5 (2019), 19–27 | DOI | MR | Zbl

[4] Zh. L. Lions, Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972

[5] N. V. Polyakov, O. G. Goman, V. A. Katan, “K voprosu ob udarnom vzaimodeistvii tela i zhidkosti so svobodnoi poverkhnostyu pri nalichii otryva”, Dokl. NAN Ukrainy, 2016, no. 8, 46–52 | DOI | MR | Zbl

[6] A. E. Golikov, N. I. Makarenko, “Gidrodinamicheskie nagruzki pri razgone tsilindra pod svobodnoi poverkhnostyu”, Prikl. mekhanika i tekhn. fizika, 63:5 (2022), 89–99 | DOI

[7] M. Reinhard, A. A. Korobkin, M. J. Cooker, “Cavity formation on the surface of a body entering water with deceleration”, J. Engrg. Math., 96:1 (2016), 155–174 | DOI | MR | Zbl

[8] M. Norkin, A. Korobkin, “The motion of the free-surface separation point during the initial stage of horizontal impulsive displacement of a floating circular cylinder”, J. Engrg. Math., 70 (2011), 239–254 | DOI | MR | Zbl

[9] V. I. Yudovich, “Odnoznachnaya razreshimost zadachi ob udare s otryvom tverdogo tela o neodnorodnuyu zhidkost”, Vladikavkaz. mat. zhurn., 7:3 (2005), 79–91 | MR

[10] Ya. S. Uflyand, Metod parnykh uravnenii v zadachakh matematicheskoi fiziki, Nauka, L., 1977 | MR

[11] N. A. Virchenko, Parnye (troinye) integralnye uravneniya, Vyscha shkola, Kiev, 1989

[12] B. N. Mandal, N. Mandal, Advances in Dual Integral Equations, Chapman Hall/CRC Press, Boca Raton, 1999 | MR | Zbl

[13] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1974

[14] I. I. Vorovich, V. I. Yudovich, “Udar kruglogo diska o zhidkost konechnoi glubiny”, Prikl. matematika i mekhanika, 21:4 (1957), 525–532

[15] M. Yu. Zhukov, E. V. Shiryaeva, Ispolzovanie paketa konechnykh elemetov FreeFem++ dlya zadach gidrodinamiki, elektroforeza i biologii, Izd-vo YuFU, Rostov n/D, 2008