Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_1_a0, author = {B. D. Annin and N. I. Ostrosablin and R. I. Ugryumov}, title = {Defining equations of~the anisotropic moment linear theory of elasticity and the two-dimensional problem of pure shear with constrained rotation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {5--19}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a0/} }
TY - JOUR AU - B. D. Annin AU - N. I. Ostrosablin AU - R. I. Ugryumov TI - Defining equations of~the anisotropic moment linear theory of elasticity and the two-dimensional problem of pure shear with constrained rotation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 5 EP - 19 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a0/ LA - ru ID - SJIM_2023_26_1_a0 ER -
%0 Journal Article %A B. D. Annin %A N. I. Ostrosablin %A R. I. Ugryumov %T Defining equations of~the anisotropic moment linear theory of elasticity and the two-dimensional problem of pure shear with constrained rotation %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 5-19 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a0/ %G ru %F SJIM_2023_26_1_a0
B. D. Annin; N. I. Ostrosablin; R. I. Ugryumov. Defining equations of~the anisotropic moment linear theory of elasticity and the two-dimensional problem of pure shear with constrained rotation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a0/
[1] E. L. Aero, E. V. Kuvshinskii, “Osnovnye uravneniya teorii uprugosti sred s vraschatelnym vzaimodeistviem chastits”, Fizika tverd. tela, 2:7 (1960), 1399–2409 | MR
[2] E. V. Kuvshinskii, E. L. Aero, “Kontinualnaya teoriya asimmetrichnoi uprugosti. Uchet «vnutrennego» vrascheniya”, Fizika tverd. tela, 5:9 (1963), 2591–2598 | MR
[3] V. T. Koiter, “Momentnye napryazheniya v teorii uprugosti”, Mekhanika, 1965, no. 3, 89–112
[4] V. A. Palmov, “Osnovnye uravneniya teorii nesimmetrichnoi uprugosti”, Prikl. matematika i mekhanika, 28:3 (1964), 401–408 | MR
[5] V. Novatskii, Teoriya uprugosti, Mir, M., 1975
[6] V. D. Kupradze, Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR
[7] B. E. Pobedrya, “O teorii opredelyayuschikh sootnoshenii v mekhanike deformiruemogo tverdogo tela”, Problemy mekhaniki, K 90-letiyu so dnya rozhdeniya A.Yu. Ishlinskogo, Fizmatlit, M., 2003, 635–657
[8] B. E. Pobedrya, S. E. Omarov, “Opredelyayuschie sootnosheniya momentnoi teorii uprugosti”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 2007, no. 3, 56–58 | Zbl
[9] M. U. Nikabadze, “K postroeniyu sobstvennykh tenzornykh stolbtsov v mikropolyarnoi lineinoi teorii uprugosti”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 2014, no. 1, 30–39 | Zbl
[10] N. I. Ostrosablin, “Klassy simmetrii tenzorov anizotropii i obobschenie podkhoda Kelvina”, Prikl. mekhanika i tekhn. fizika, 58:3 (2017), 108–129 | MR | Zbl
[11] N. I. Ostrosablin, “Obschee reshenie dvumernoi sistemy staticheskikh uravnenii Lame lineinoi teorii uprugosti s nesimmetrichnoi matritsei modulei uprugosti”, Sib. zhurn. industr. matematiki, 21:1 (2018), 61–71
[12] A. N. Emelyanov, Effektivnye kharakteristiki v momentnoi teorii uprugosti, Dis. ... kand. fiz.-mat. nauk, M.., 2016
[13] M. U. Nikabadze, “O svyazi tenzorov napryazhenii i momentnykh napryazhenii v mikrokontinualnoi teorii uprugosti”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 2011, no. 6, 59–62 | Zbl
[14] B. D. Annin, N. I. Ostrosablin, “Anizotropiya uprugikh svoistv materialov”, Prikl. mekhanika i tekhn. fizika, 49:6 (2008), 131–151 | MR
[15] E. L. Aero, E. V. Kuvshinskii, “Kontinualnaya teoriya asimmetricheskoi uprugosti. Ravnovesie izotropnogo tela”, Fizika tverd. tela, 6:9 (1964), 2689–2699 | MR
[16] M. U. Nikabadze, “O zadache na sobstvennye znacheniya nekotorykh primenyaemykh v mekhanike tenzorov i o chisle suschestvennykh uslovii sovmestnosti deformatsii Sen-Venana”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 2017, no. 3, 54–58 | Zbl
[17] N. F. Morozov, Izbrannye dvumernye zadachi teorii uprugosti, Izd-vo Leningrad. gos. un-ta, L., 1978
[18] N. F. Morozov, Matematicheskie voprosy teorii treschin, Nauka, M., 1984
[19] T. B. Duishenaliev, Neklassicheskie resheniya mekhaniki deformiruemogo tela, Izd-vo MEI, M., 2017