Defining equations of~the anisotropic moment linear theory of elasticity and the two-dimensional problem of pure shear with constrained rotation
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 5-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the equations of the linear moment theory of elasticity for the case of arbitrary anisotropy of material tensors of the fourth rank. Symmetric and skew-symmetric components are distinguished in the defining relations. Some simplified variants of linear defining relations are considered. The possibility of Cauchy elasticity is allowed when material tensors of the fourth rank do not have the main symmetry. For material tensors that determine force and moment stresses, eigenmodulus and eigenstates are introduced, which are invariant characteristics of an elastic moment medium. For the case of plane deformation and constrained rotation, an example of a complete solution of a two-dimensional problem is given when there are only shear stresses. For anisotropic and isotropic elastic media, the solutions turn out to be significantly different.
Keywords: moment theory of elasticity, asymmetric stress tensors, defining equations, elastic modulus, fourth-rank tensors, pure shear, constrained rotation, two-dimensional problem. .
@article{SJIM_2023_26_1_a0,
     author = {B. D. Annin and N. I. Ostrosablin and R. I. Ugryumov},
     title = {Defining equations of~the anisotropic moment linear theory of elasticity and the two-dimensional problem of pure shear  with constrained rotation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a0/}
}
TY  - JOUR
AU  - B. D. Annin
AU  - N. I. Ostrosablin
AU  - R. I. Ugryumov
TI  - Defining equations of~the anisotropic moment linear theory of elasticity and the two-dimensional problem of pure shear  with constrained rotation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 5
EP  - 19
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a0/
LA  - ru
ID  - SJIM_2023_26_1_a0
ER  - 
%0 Journal Article
%A B. D. Annin
%A N. I. Ostrosablin
%A R. I. Ugryumov
%T Defining equations of~the anisotropic moment linear theory of elasticity and the two-dimensional problem of pure shear  with constrained rotation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 5-19
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a0/
%G ru
%F SJIM_2023_26_1_a0
B. D. Annin; N. I. Ostrosablin; R. I. Ugryumov. Defining equations of~the anisotropic moment linear theory of elasticity and the two-dimensional problem of pure shear  with constrained rotation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a0/

[1] E. L. Aero, E. V. Kuvshinskii, “Osnovnye uravneniya teorii uprugosti sred s vraschatelnym vzaimodeistviem chastits”, Fizika tverd. tela, 2:7 (1960), 1399–2409 | MR

[2] E. V. Kuvshinskii, E. L. Aero, “Kontinualnaya teoriya asimmetrichnoi uprugosti. Uchet «vnutrennego» vrascheniya”, Fizika tverd. tela, 5:9 (1963), 2591–2598 | MR

[3] V. T. Koiter, “Momentnye napryazheniya v teorii uprugosti”, Mekhanika, 1965, no. 3, 89–112

[4] V. A. Palmov, “Osnovnye uravneniya teorii nesimmetrichnoi uprugosti”, Prikl. matematika i mekhanika, 28:3 (1964), 401–408 | MR

[5] V. Novatskii, Teoriya uprugosti, Mir, M., 1975

[6] V. D. Kupradze, Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR

[7] B. E. Pobedrya, “O teorii opredelyayuschikh sootnoshenii v mekhanike deformiruemogo tverdogo tela”, Problemy mekhaniki, K 90-letiyu so dnya rozhdeniya A.Yu. Ishlinskogo, Fizmatlit, M., 2003, 635–657

[8] B. E. Pobedrya, S. E. Omarov, “Opredelyayuschie sootnosheniya momentnoi teorii uprugosti”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 2007, no. 3, 56–58 | Zbl

[9] M. U. Nikabadze, “K postroeniyu sobstvennykh tenzornykh stolbtsov v mikropolyarnoi lineinoi teorii uprugosti”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 2014, no. 1, 30–39 | Zbl

[10] N. I. Ostrosablin, “Klassy simmetrii tenzorov anizotropii i obobschenie podkhoda Kelvina”, Prikl. mekhanika i tekhn. fizika, 58:3 (2017), 108–129 | MR | Zbl

[11] N. I. Ostrosablin, “Obschee reshenie dvumernoi sistemy staticheskikh uravnenii Lame lineinoi teorii uprugosti s nesimmetrichnoi matritsei modulei uprugosti”, Sib. zhurn. industr. matematiki, 21:1 (2018), 61–71

[12] A. N. Emelyanov, Effektivnye kharakteristiki v momentnoi teorii uprugosti, Dis. ... kand. fiz.-mat. nauk, M.., 2016

[13] M. U. Nikabadze, “O svyazi tenzorov napryazhenii i momentnykh napryazhenii v mikrokontinualnoi teorii uprugosti”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 2011, no. 6, 59–62 | Zbl

[14] B. D. Annin, N. I. Ostrosablin, “Anizotropiya uprugikh svoistv materialov”, Prikl. mekhanika i tekhn. fizika, 49:6 (2008), 131–151 | MR

[15] E. L. Aero, E. V. Kuvshinskii, “Kontinualnaya teoriya asimmetricheskoi uprugosti. Ravnovesie izotropnogo tela”, Fizika tverd. tela, 6:9 (1964), 2689–2699 | MR

[16] M. U. Nikabadze, “O zadache na sobstvennye znacheniya nekotorykh primenyaemykh v mekhanike tenzorov i o chisle suschestvennykh uslovii sovmestnosti deformatsii Sen-Venana”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 2017, no. 3, 54–58 | Zbl

[17] N. F. Morozov, Izbrannye dvumernye zadachi teorii uprugosti, Izd-vo Leningrad. gos. un-ta, L., 1978

[18] N. F. Morozov, Matematicheskie voprosy teorii treschin, Nauka, M., 1984

[19] T. B. Duishenaliev, Neklassicheskie resheniya mekhaniki deformiruemogo tela, Izd-vo MEI, M., 2017