On optimal control in the problem of long-run tracking the exponential Ornstein---Uhlenbeck process
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 116-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of optimal tracking the exponential Ornstein—Uhlenbeck process. By change of variables, the linear-quadratic control system with discounting has been transformed into linear inhomogeneous system with random coefficients. For such a system, we obtain an optimal control law over an infinite time-horizon. The results are applied to derive an optimal control in the tracking problem with respect to criteria of long-term losses per unit of accumulated discount.
Keywords: linear stochastic controller, tracking, exponential Ornstein—Uhlenbeck process, discounting. .
@article{SJIM_2022_25_4_a9,
     author = {E. S. Palamarchuk},
     title = {On optimal control in the problem of long-run tracking the exponential {Ornstein---Uhlenbeck} process},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {116--135},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a9/}
}
TY  - JOUR
AU  - E. S. Palamarchuk
TI  - On optimal control in the problem of long-run tracking the exponential Ornstein---Uhlenbeck process
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 116
EP  - 135
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a9/
LA  - ru
ID  - SJIM_2022_25_4_a9
ER  - 
%0 Journal Article
%A E. S. Palamarchuk
%T On optimal control in the problem of long-run tracking the exponential Ornstein---Uhlenbeck process
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 116-135
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a9/
%G ru
%F SJIM_2022_25_4_a9
E. S. Palamarchuk. On optimal control in the problem of long-run tracking the exponential Ornstein---Uhlenbeck process. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 116-135. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a9/

[1] B. D. O. Anderson, J. B. Moore, Optimal Control: Linear Quadratic Methods, Dover Publ, N.Y., 2007 | MR

[2] X. Kvakernaak, P. Sivan, Lineinye optimalnye sistemy upravleniya, Nauka, M., 1977

[3] D. D. Yao, S. Zhang, X. Y. Zhou, “Tracking a financial benchmark using a few assets”, Oper. Res., 54:2 (2006), 232–246 | DOI | MR

[4] E. S. Schwartz, “The stochastic behavior of commodity prices: Implications for valuation and hedging”, J. Finance, 52:3 (1997), 923–973 | DOI

[5] H. Lutkepohl, F. Xu, “The role of the log transformation in forecasting economic variables”, Empir. Economics, 42:3 (2012), 619–638 | DOI | MR

[6] R. Gutierrez, A. Nafidi, R. G. Sanchez, “Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model”, Appl. Energy, 80:2 (2005), 115–124 | DOI | MR

[7] T. C. Sharma, “Stochastic characteristics of rainfall-runoff processes in Zambia”, Hydrolog. Sci. J., 30:4 (1985), 479–512 | DOI

[8] L. J. Maccini, B. J. Moore, H. Schaller, “The interest rate, learning, and inventory investment”, Amer. Econom. Rev., 94:5 (2004), 1303–1327 | DOI

[9] S. S. Girimaji, S. B. Pope, “A diffusion model for velocity gradients in turbulence”, Phys. Fluids. A: Fluid Dynamics, 2:2 (1990), 242–256 | DOI

[10] H. Verdejo, A. Awerkin, W. Kliemann, C. Becker, “Modelling uncertainties in electrical power systems with stochastic differential equations”, Internat. J. Electr. Power Energy Systems, 113 (2019), 322–332 | DOI

[11] E. Palamarchuk, “On infinite time linear-quadratic Gaussian control of inhomogeneous systems”, Control Conf., ECC 2016, IEEE, N.Y., 2016, 2477–2482 | DOI

[12] S. Chen, X. Y. Zhou, “Stochastic linear quadratic regulators with indefinite control weight costs. II”, SIAM J. Control Optimization, 39:4 (2000), 1065–1081 | DOI | MR

[13] G. Loewenstein, D. Prelec, “Anomalies in intertemporal choice: Evidence and an interpretation”, Quarterly J. Economics, 107:2 (1992), 573–597 | DOI

[14] E. K. Bonkas, Z. K. Liu, “Suboptimal design of regulators for jump linear system with time-multiplied quadratic cost”, IEEE Trans. Automat. Control, 46:1 (2001), 131–136 | DOI | MR

[15] M. Fuhrman, G. Tessitore, “Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces”, Annals of Probability, 32:1B (2004), 607–660 | DOI | MR

[16] G. Kramer, M. Lidbetter, Statsionarnye sluchainye protsessy, Mir, M., 1969

[17] S. Al-Azzawi, J. Liu, X. Liu, “Convergence rate of synchronization of systems with additive noise”, Ser. Discrete Contin. Dyn. Systems. B, 22:2 (2017), 227–245 | DOI | MR

[18] E. S. Palamarchuk, “Asimptoticheskoe povedenie resheniya lineinogo stokhasticheskogo differentsialnogo uravneniya i optimalnostpochti navernoe? dlya upravlyaemogo sluchainogo protsessa”, Zhurn. vychisl. matematiki i mat. fiziki, 54:1 (2014), 89–103 | MR

[19] E. C. Ozelkan, A. Galambosi, E. Fernandez-Gaucherand, L. Duckstein, “Linear quadratic dynamic programming for water reservoir management”, Appl. Math. Model, 21:9 (1997), 591–598 | DOI

[20] J. Huang, G. Wang, Z. Wu, “Optimal premium policy of an insurance firm: full and partial information”, Insurance: Math. Econom, 47:2 (2010), 208–215 | DOI | MR

[21] K. Takemura, Behavioral Decision Theory, Springer-Verl, Singapore, 2021 | MR

[22] E. S. Palamarchuk, “Teorema sravneniya dlya odnogo klassa differentsialnykh uravnenii Rikkati i ee prilozhenie”, Differents. uravneniya, 52:8 (2016), 1020–1025 | MR