Uniqueness of the solution of boundary value problems of static equations of elasticity theory with an asymmetric matrix of elastic modules
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 107-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The uniqueness of the solution of boundary value problems of static equations of elasticity theory for Cauchy elastic materials with an asymmetric matrix of elastic modules and with a symmetric matrix, but not necessarily positive definite, is proved. Using eigenstates (bases), the linear relationship of stresses and deformations is written in an invariant form. There are different ways of writing defining relations, including using symmetric matrices. The specific strain energy for all variants has the canonical form of a positive definite quadratic form.
Keywords: Cauchy elasticity, proper modules, proper basis, boundary value problems, uniqueness of the solution. .
@article{SJIM_2022_25_4_a8,
     author = {N. I. Ostrosablin},
     title = {Uniqueness of the solution of boundary value problems of static equations of elasticity theory with an asymmetric matrix of elastic modules},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {107--115},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a8/}
}
TY  - JOUR
AU  - N. I. Ostrosablin
TI  - Uniqueness of the solution of boundary value problems of static equations of elasticity theory with an asymmetric matrix of elastic modules
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 107
EP  - 115
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a8/
LA  - ru
ID  - SJIM_2022_25_4_a8
ER  - 
%0 Journal Article
%A N. I. Ostrosablin
%T Uniqueness of the solution of boundary value problems of static equations of elasticity theory with an asymmetric matrix of elastic modules
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 107-115
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a8/
%G ru
%F SJIM_2022_25_4_a8
N. I. Ostrosablin. Uniqueness of the solution of boundary value problems of static equations of elasticity theory with an asymmetric matrix of elastic modules. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 107-115. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a8/

[1] Khan Kh. Teoriya uprugosti, Osnovy lineinoi teorii i ee primeneniya, Mir, M., 1988 | MR

[2] K. F. Chernykh, Vvedenie v anizotropnuyu uprugost, Nauka, M., 1988

[3] N. I. Ostrosablin, “Klassy simmetrii tenzorov anizotropii kvaziuprugikh materialov i obobschenie podkhoda Kelvina”, Prikl. mekhanika i tekhn. fizika, 58:3 (2017), 108–129 | MR

[4] Yu. N. Rabotnov, Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977 | MR

[5] T. G. Rogers, A. C. Pipkin, “Asymmetric relaxtion and compliance matrices in linear viscoelasticity”, Z. Angew. Math. Phys., 14:4 (1963), 334–343 | DOI | MR

[6] I. S. Zheludev, Simmetriya i ee prilozheniya, Atomizdat, M., 1976 | MR

[7] V. V. Mokryakov, “Issledovanie zavisimosti effektivnykh podatlivostei ploskosti s reshetkoi krugovykh otverstii ot parametrov reshetki”, Vychisl. mekhanika sploshnykh sred, 3:3 (2010), 90–101 | MR

[8] S. Yu. Lavrentev, V. V. Mokryakov, A. V. Chentsov, “Effektivnye uprugie moduli perforirovannykh plastin, soderzhaschikh pryamougolnuyu reshetku kruglykh otverstii”, Izv. RAN. Mekhanika tverdogo tela, 2021, no. 3, 7–12

[9] V. O. Bytev, I. V. Slezko, D. E. Nikolaev, “Tochnye resheniya nekotorykh zadach ploskoi asimmetrichnoi teorii uprugosti”, Vestn. Tyumen. gos. un-ta, 2007, no. 5, 32–43

[10] V. O. Bytev, I. V. Slezko, “Reshenie zadach asimmetrichnoi uprugosti”, Vestn. Samar. gos. un-ta. Estestvennonauch. ser., 2008, no. 6, 238–243

[11] N. I. Ostrosablin, “Obschee reshenie dvumernoi sistemy staticheskikh uravnenii Lame lineinoi uprugosti s nesimmetrichnoi matritsei modulei uprugosti”, Sib. zhurn. industr. matematiki, 21:1 (2018), 61–71

[12] V. K. Andreev, V. V. Bublik, V. O. Bytev, Simmetrii neklassicheskikh modelei gidrodinamiki, Nauka, Novosibirsk, 2003 | MR

[13] P. Podio-Guidugli, E. G. Virga, “Transversely isotropic elasticity tensors”, Proc. Roy. Soc. London. Ser. A, 411:1840 (1987), 85–93 | DOI | MR

[14] N. F. Belmetsev, Yu. A. Chirkunov, “Tochnye resheniya uravnenii dinamicheskoi asimmetrichnoi modeli teorii uprugosti”, Sib. zhurn. industr. matematiki, 15:4 (2012), 38–50

[15] G. Geymonat, P. Gilormini, “On the existence of longitudinal plane waves in general elastic anisotropic media”, J. Elasticity, 54:3 (1999), 253–266 | DOI | MR

[16] I. V. Slezko, Modelirovanie nekotorykh protsessov asimmetrichnoi uprugosti, Avtoref. dis. ...kand. fiz.-mat. nauk, Tyumen. gos. un-t, Tyumen, 2009

[17] N. F. Belmetsev, Postroenie i issledovanie podmodelei asimmetrichnoi i transversalnoizotropnoi modelei uprugikh sred, Avtoref. dis. ...kand. fiz.-mat. nauk, IM SO RAN, Novosibirsk, 2020

[18] Yu. N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1979

[19] V. Novatskii, Teoriya uprugosti, Mir, M., 1975

[20] N. I. Muskhelishvili, Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966 | MR

[21] N. V. Efimov, E. R. Rozendorn, Lineinaya algebra i mnogomernaya geometriya, Nauka, M., 1970

[22] S. K. Godunov, Elementy mekhaniki sploshnoi sredy, Nauka, M., 1978 | MR