Hyperbolic model of strongly nonlinear waves in two-layer flows of an inhomogeneous fluid
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 71-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of propagation of nonlinear long waves in a two-layer shear flow of an inhomogeneous liquid with a free boundary is proposed, taking into account the effects of dispersion and mixing. The equations of fluid motion are presented in the form of a hyperbolic system of quasi-linear equations of the first order. Solutions describing damped oscillations of the internal interface are constructed in the class of traveling waves. The parameters of a two-layer flow at which the formation of large-amplitude waves is possible are found. Numerical simulation of nonstationary flows arising during the flow around a local obstacle is performed. It is shown that, depending on the velocity of the incoming flow and the shape of the obstacle, disturbances propagate upstream in the form of a monotone or wave boron.
Keywords: equations of long waves, hyperbolicity, inhomogeneous fluid, mixing
Mots-clés : dispersion. .
@article{SJIM_2022_25_4_a5,
     author = {V. E. Ermishina},
     title = {Hyperbolic model of strongly nonlinear waves in two-layer flows of an inhomogeneous fluid},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {71--85},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a5/}
}
TY  - JOUR
AU  - V. E. Ermishina
TI  - Hyperbolic model of strongly nonlinear waves in two-layer flows of an inhomogeneous fluid
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 71
EP  - 85
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a5/
LA  - ru
ID  - SJIM_2022_25_4_a5
ER  - 
%0 Journal Article
%A V. E. Ermishina
%T Hyperbolic model of strongly nonlinear waves in two-layer flows of an inhomogeneous fluid
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 71-85
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a5/
%G ru
%F SJIM_2022_25_4_a5
V. E. Ermishina. Hyperbolic model of strongly nonlinear waves in two-layer flows of an inhomogeneous fluid. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 71-85. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a5/

[1] V. Yu. Lyapidevskii, V. M. Teshukov, Matematicheskie modeli rasprostraneniya dlinnykh voln v neodnorodnoi zhidkosti, Izd-vo SO RAN, Novosibirsk, 2000

[2] O. Castro-Orgaz, W. H. Hager, Non-Hydrostatic Free Surface Flows, Springer-Verl, Berlin, 2017 | DOI | MR

[3] A. E. Green, P. M. Naghdi, “A derivation of equations for wave propagation in water of variable depth”, J. Fluid Mech., 78 (1976), 237–246 | DOI | MR

[4] O. Le Metayer, S. Gavrilyuk, S. Hank, “A numerical scheme for the Green-Naghdi model”, J. Comput. Phys., 229 (2010), 2034–2045 | DOI | MR

[5] D. Lannes, F. Marche, “A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations”, J. Comput. Phys., 282 (2015), 238–268 | DOI | MR

[6] D. Givoli, B. Neta, “High-order non-reflecting boundary conditions for the dispersive shallow water equations”, J. Comput. Appl. Math., 158 (2003), 49–60 | DOI | MR

[7] C. Besse, P. Noble, D. Sanchez, “Discrete transparent boundary conditions for the mixed KDV-BBM equation”, J. Comput. Phys., 345 (2017), 484–509 | DOI | MR

[8] V. Yu. Lyapidevskii, K. N. Gavrilova, “Dispersionnye effekty i blokirovka potoka pri obtekanii poroga”, Prikl. mekhanika i tekhn. fizika, 49:1 (2008), 45–58 | MR

[9] N. Favrie, S. Gavrilyuk, “A rapid numerical method for solving Serre Green - Naghdi equations describing long free surface gravity waves”, Nonlinearity, 30 (2017), 2718–2736 | DOI | MR

[10] A. A. Chesnokov, T. H. Nguyen, “Hyperbolic model for free surface shallow water flows with effects of dispersion, vorticity and topography”, Comput. Fluids, 189 (2019), 13–23 | DOI | MR

[11] A. A. Chesnokov, V. Yu. Liapidevskii, “Hyperbolic model of internal solitary waves in a three-layer stratified fluid”, Europ. Phys. J. Plus., 135 (2020), 590, 1–19 | DOI

[12] V. Yu. Lyapidevskii, A. A. Chesnokov, V. E. Ermishina, “Kvazilineinye uravneniya dinamiki vnutrennikh voln v mnogosloinoi melkoi vode”, Prikl. mekhanika i tekhn. fizika, 62:4 (2021), 34–45

[13] S. Busto, M. Dumbser, C. Escalante, N. Favrie, S. Gavrilyuk, “On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems”, J. Sci. Comput., 87 (2021), 48, 1–47 | DOI | MR

[14] S. L. Gavrilyuk, V. Yu. Liapidevskii, A. A. Chesnokov, “Interaction of a subsurface bubble layer with long internal waves”, Europ. J. Mech. B/Fluids, 73 (2019), 157–169 | DOI | MR

[15] E. L. Shroyer, J. N. Moum, J. D. Nash, “Energy transformations and dissipation of nonlinear internal waves over New Jersey's continental shelf”, Nonlinear. Processes Geophys, 17 (2010), 345–360 | DOI | MR

[16] J. C. Harris, L. Decker, “Intermittent large amplitude internal waves observed in Port Susan, Puget Sound”, Estuar. Coast. Shelf Sci, 194 (2017), 143–149 | DOI

[17] M. Brocchini, D. H. Peregrine, “The dynamics of strong turbulence at free surfaces. Part 1. Description”, J. Fluid Mech., 449 (2001), 225–254 | DOI | MR

[18] M. Brocchini, D. H. Peregrine, “The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions”, J. Fluid Mech, 449 (2001), 255–290 | DOI | MR

[19] R. H. J. Grimshaw, K. R. Khusnutdinova, L. A. Ostrovsky, A. S. Topolnikov, “Structure formation in the oceanic subsurface bubble layer by an internal wave field”, Phys. Fluids, 22 (2010), 106603 | DOI

[20] P. Lubin, S. Glockner, “Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments”, J. Fluid Mech., 767 (2015), 364–393 | DOI | MR

[21] V. Yu. Lyapidevskii, A. K. Khe, A. A. Chesnokov, “Rezhimy techeniya v ploskom elastichnom kanale pri nalichii lokalnogo izmeneniya zhestkosti stenok”, Sib. zhurn. industr. matematiki, 22:2 (2019), 37–48 | MR

[22] A. A. Chesnokov, S. L. Gavrilyuk, V. Y. Liapidevskii, “Mixing and nonlinear internal waves in a shallow flow of a three-layer stratified fluid”, Phys. Fluids, 34:7 (2022), 075104 | DOI

[23] L. V. Ovsyannikov, “Modeli dvukhsloinoi «melkoi vody»”, Prikl. mekhanika i tekhn. fizika, 1979, no. 2, 3–14

[24] A. A. Chesnokov, G. A. El, S. L. Gavrilyuk, M. V. Pavlov, “Stability of shear shallow water flows with free surface”, SIAM J. Appl. Math., 77 (2017), 1068–1087 | DOI | MR

[25] H. Nessyahu, E. Tadmor, “Non-oscillatory central differencing schemes for hyperbolic conservation laws”, J. Comp. Phys., 87 (1990), 408–463 | DOI | MR

[26] A. Treske, “Undular bores (Favre waves) in open channels: experimental studies”, J. Hydraul. Res., 32 (1994), 355–370 | DOI