Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_4_a5, author = {V. E. Ermishina}, title = {Hyperbolic model of strongly nonlinear waves in two-layer flows of an inhomogeneous fluid}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {71--85}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a5/} }
TY - JOUR AU - V. E. Ermishina TI - Hyperbolic model of strongly nonlinear waves in two-layer flows of an inhomogeneous fluid JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 71 EP - 85 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a5/ LA - ru ID - SJIM_2022_25_4_a5 ER -
V. E. Ermishina. Hyperbolic model of strongly nonlinear waves in two-layer flows of an inhomogeneous fluid. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 71-85. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a5/
[1] V. Yu. Lyapidevskii, V. M. Teshukov, Matematicheskie modeli rasprostraneniya dlinnykh voln v neodnorodnoi zhidkosti, Izd-vo SO RAN, Novosibirsk, 2000
[2] O. Castro-Orgaz, W. H. Hager, Non-Hydrostatic Free Surface Flows, Springer-Verl, Berlin, 2017 | DOI | MR
[3] A. E. Green, P. M. Naghdi, “A derivation of equations for wave propagation in water of variable depth”, J. Fluid Mech., 78 (1976), 237–246 | DOI | MR
[4] O. Le Metayer, S. Gavrilyuk, S. Hank, “A numerical scheme for the Green-Naghdi model”, J. Comput. Phys., 229 (2010), 2034–2045 | DOI | MR
[5] D. Lannes, F. Marche, “A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations”, J. Comput. Phys., 282 (2015), 238–268 | DOI | MR
[6] D. Givoli, B. Neta, “High-order non-reflecting boundary conditions for the dispersive shallow water equations”, J. Comput. Appl. Math., 158 (2003), 49–60 | DOI | MR
[7] C. Besse, P. Noble, D. Sanchez, “Discrete transparent boundary conditions for the mixed KDV-BBM equation”, J. Comput. Phys., 345 (2017), 484–509 | DOI | MR
[8] V. Yu. Lyapidevskii, K. N. Gavrilova, “Dispersionnye effekty i blokirovka potoka pri obtekanii poroga”, Prikl. mekhanika i tekhn. fizika, 49:1 (2008), 45–58 | MR
[9] N. Favrie, S. Gavrilyuk, “A rapid numerical method for solving Serre Green - Naghdi equations describing long free surface gravity waves”, Nonlinearity, 30 (2017), 2718–2736 | DOI | MR
[10] A. A. Chesnokov, T. H. Nguyen, “Hyperbolic model for free surface shallow water flows with effects of dispersion, vorticity and topography”, Comput. Fluids, 189 (2019), 13–23 | DOI | MR
[11] A. A. Chesnokov, V. Yu. Liapidevskii, “Hyperbolic model of internal solitary waves in a three-layer stratified fluid”, Europ. Phys. J. Plus., 135 (2020), 590, 1–19 | DOI
[12] V. Yu. Lyapidevskii, A. A. Chesnokov, V. E. Ermishina, “Kvazilineinye uravneniya dinamiki vnutrennikh voln v mnogosloinoi melkoi vode”, Prikl. mekhanika i tekhn. fizika, 62:4 (2021), 34–45
[13] S. Busto, M. Dumbser, C. Escalante, N. Favrie, S. Gavrilyuk, “On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems”, J. Sci. Comput., 87 (2021), 48, 1–47 | DOI | MR
[14] S. L. Gavrilyuk, V. Yu. Liapidevskii, A. A. Chesnokov, “Interaction of a subsurface bubble layer with long internal waves”, Europ. J. Mech. B/Fluids, 73 (2019), 157–169 | DOI | MR
[15] E. L. Shroyer, J. N. Moum, J. D. Nash, “Energy transformations and dissipation of nonlinear internal waves over New Jersey's continental shelf”, Nonlinear. Processes Geophys, 17 (2010), 345–360 | DOI | MR
[16] J. C. Harris, L. Decker, “Intermittent large amplitude internal waves observed in Port Susan, Puget Sound”, Estuar. Coast. Shelf Sci, 194 (2017), 143–149 | DOI
[17] M. Brocchini, D. H. Peregrine, “The dynamics of strong turbulence at free surfaces. Part 1. Description”, J. Fluid Mech., 449 (2001), 225–254 | DOI | MR
[18] M. Brocchini, D. H. Peregrine, “The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions”, J. Fluid Mech, 449 (2001), 255–290 | DOI | MR
[19] R. H. J. Grimshaw, K. R. Khusnutdinova, L. A. Ostrovsky, A. S. Topolnikov, “Structure formation in the oceanic subsurface bubble layer by an internal wave field”, Phys. Fluids, 22 (2010), 106603 | DOI
[20] P. Lubin, S. Glockner, “Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments”, J. Fluid Mech., 767 (2015), 364–393 | DOI | MR
[21] V. Yu. Lyapidevskii, A. K. Khe, A. A. Chesnokov, “Rezhimy techeniya v ploskom elastichnom kanale pri nalichii lokalnogo izmeneniya zhestkosti stenok”, Sib. zhurn. industr. matematiki, 22:2 (2019), 37–48 | MR
[22] A. A. Chesnokov, S. L. Gavrilyuk, V. Y. Liapidevskii, “Mixing and nonlinear internal waves in a shallow flow of a three-layer stratified fluid”, Phys. Fluids, 34:7 (2022), 075104 | DOI
[23] L. V. Ovsyannikov, “Modeli dvukhsloinoi «melkoi vody»”, Prikl. mekhanika i tekhn. fizika, 1979, no. 2, 3–14
[24] A. A. Chesnokov, G. A. El, S. L. Gavrilyuk, M. V. Pavlov, “Stability of shear shallow water flows with free surface”, SIAM J. Appl. Math., 77 (2017), 1068–1087 | DOI | MR
[25] H. Nessyahu, E. Tadmor, “Non-oscillatory central differencing schemes for hyperbolic conservation laws”, J. Comp. Phys., 87 (1990), 408–463 | DOI | MR
[26] A. Treske, “Undular bores (Favre waves) in open channels: experimental studies”, J. Hydraul. Res., 32 (1994), 355–370 | DOI