A method for solving one biological problem of large dimension
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 42-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of ordinary differential equations of large dimension modeling multistage synthesis is considered. A new method for constructing an approximate solution of the Cauchy problem is proposed. The method is based on established connections between solutions of a system of differential equations, equations with a lagging argument and partial differential equations of parabolic type.
Keywords: a system of ordinary differential equations of large dimension, limit theorems, equations with lagging argument, equations with partial derivatives. .
@article{SJIM_2022_25_4_a3,
     author = {G. V. Demidenko},
     title = {A method for solving one biological problem of large dimension},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {42--53},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a3/}
}
TY  - JOUR
AU  - G. V. Demidenko
TI  - A method for solving one biological problem of large dimension
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 42
EP  - 53
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a3/
LA  - ru
ID  - SJIM_2022_25_4_a3
ER  - 
%0 Journal Article
%A G. V. Demidenko
%T A method for solving one biological problem of large dimension
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 42-53
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a3/
%G ru
%F SJIM_2022_25_4_a3
G. V. Demidenko. A method for solving one biological problem of large dimension. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 42-53. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a3/

[1] B. C. Goodwin, “Oscillatory behavior of enzymatic control processes”, Adv. Enzyme Reg, 3 (1965), 425–439 | DOI

[2] Dzh. Marri, Nelineinye differentsialnye uravneniya v biologii. Lektsii o modelyakh, 1983, Mir, M.

[3] G. V. Demidenko, N. A. Kolchanov, V. A. Likhoshvai, Yu. G. Matushkin, S. I. Fadeev, “Matematicheskoe modelirovanie regulyarnykh konturov gennykh setei”, Zhurn. vychisl. matematiki i mat. fiziki, 44:12 (2004), 2276–2295 | MR

[4] V. A. Likhoshvai, S. I. Fadeev, G. V. Demidenko, Yu. G. Matushkin, “Modelirovanie uravneniem s zapazdyvayuschim argumentom mnogostadiinogo sinteza bez vetvleniya”, Sib. zhurn. industr. matematiki, 7:1 (2004), 73–94 | MR

[5] G. V. Demidenko, I. A. Melnik, “Ob odnom sposobe approksimatsii reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Sib. mat. zhurn., 51:3 (2010), 528–546 | MR

[6] G. V. Demidenko, I. A. Uvarova, “Klass sistem obyknovennykh differentsialnykh uravnenii vysokoi razmernosti”, Sib. zhurn. industr. matematiki, 19:2 (2016), 47–60 | MR

[7] G. V. Demidenko, V. A. Likhoshvai, T. V. Kotova, Yu. E. Khropova, “Ob odnom klasse sistem differentsialnykh uravnenii i ob uravneniyakh s zapazdyvayuschim argumentom”, Sib. mat. zhurn., 47:1 (2006), 58–68 | MR

[8] G. V. Demidenko, “Sistemy differentsialnykh uravnenii vysokoi razmernosti i uravneniya s zapazdyvayuschim argumentom”, Sib. mat. zhurn., 53:6 (2012), 1274–1282 | MR

[9] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR