Iterative solution of a retrospective inverse problem of heat conduction with inhomogeneous Dirichlet boundary conditions
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 27-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a retrospective inverse problem of heat conduction with non-stationary inhomogeneous Dirichlet boundary conditions. It is approximated by the Crank—Nicolson difference scheme, which has the second order of approximation both in the spatial variable and in time. To determine the solution of the resulting system of linear algebraic equations, it is proposed to use the iterative method of conjugate gradients. Examples are given of restoring smooth, nonsmooth, and discontinuous initial conditions, including the introduction of «noise» characteristic of additional conditions of inverse problems and its smoothing using the Savitsky—Golay filter.
Keywords: retrospective heat conductivity problem, Crank—Nicholson difference scheme, conjugate gradient method, filter Savitsky—Goley.
Mots-clés : perturbation condition
@article{SJIM_2022_25_4_a2,
     author = {V. I. Vasil'ev and A. M. Kardashevsky and V. V. Popov},
     title = {Iterative solution of a retrospective inverse problem of heat conduction with inhomogeneous {Dirichlet} boundary conditions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {27--41},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a2/}
}
TY  - JOUR
AU  - V. I. Vasil'ev
AU  - A. M. Kardashevsky
AU  - V. V. Popov
TI  - Iterative solution of a retrospective inverse problem of heat conduction with inhomogeneous Dirichlet boundary conditions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 27
EP  - 41
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a2/
LA  - ru
ID  - SJIM_2022_25_4_a2
ER  - 
%0 Journal Article
%A V. I. Vasil'ev
%A A. M. Kardashevsky
%A V. V. Popov
%T Iterative solution of a retrospective inverse problem of heat conduction with inhomogeneous Dirichlet boundary conditions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 27-41
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a2/
%G ru
%F SJIM_2022_25_4_a2
V. I. Vasil'ev; A. M. Kardashevsky; V. V. Popov. Iterative solution of a retrospective inverse problem of heat conduction with inhomogeneous Dirichlet boundary conditions. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 27-41. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a2/

[1] R. Lattes, Zh. L. Lions, Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970

[2] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1974

[3] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978

[4] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki, Nauka, M., 1980 | MR

[5] A. A. Samarskii, P. N. Vabischevich, Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, M., 2004

[6] S. I. Kabanikhin, Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2009

[7] M. N. Ozisik, R. B. Helcio, Inverse Heat Transfer. Fundamentals and Applications, Imprint Routledge, N.Y., 2020 | MR

[8] D. Lesnic, Inverse Problems with Applications in Science and Engineering, Imprint Chapman and Hall/CRC, Boca Raton, 2021

[9] Z. Zhao, Z. Meng, “A modified Tikhonov regularization method for a backward heat equation”, Inverse Probl. Sci. Engrg, 19:8 (2011), 1175–1182 | DOI | MR

[10] W. Cheng, Y. J. Ma, C. L. Fu, “A regularization method for solving the radially symmetric backward heat conduction problem”, Appl. Math. Lett, 30 (2014), 38–43 | DOI | MR

[11] L. D. Su, “A radial basis function (RBF)-finite difference (FD) method for the backward heat conduction problem”, Appl. Math. Comput, 354 (2019), 232–247 | MR

[12] S. I. Kabanikhin, G. B. Bakanov, “The optimizational method for solving the discrete inverse problem for hyperbolic equation”, J. Inverse and Ill-Posed Probl, 4:6 (1996), 513–530 | DOI | MR

[13] S. I. Kabanikhin, G. B. Bakanov, “The optimization method for solving a discrete inverse problem for a hyperbolic equation”, Dokl. Math, 58:1 (1998), 32–35 | MR

[14] A. L. Karchevsky, “Finite-difference coefficient inverse problem and properties of the misfit functional”, J. Inverse Ill-Posed Probl, 6:5 (1998), 431–452 | DOI | MR

[15] A. L. Karchevskii, “Korrektnaya skhema deistvii pri chislennom reshenii obratnoi zadachi optimizatsionnym metodom”, Sib. zhurn. vychisl. matematiki, 11:2 (2008), 139–149

[16] A. A. Samarskii, P. N. Vabischevich, V. I. Vasilev, “Iteratsionnoe reshenie retrospektivnoi obratnoi zadachi teploprovodnosti”, Mat. modelirovanie, 9:5 (1997), 119–127 | MR

[17] V. I. Vasil'ev, A. M. Kardashevskii, P. V. Sivtsev, “Computational experiment on the numerical solution of some inverse problems of mathematical physics”, IOP Conf. Ser. Materials Sci. Engrg., 158:1 (2016), 012093 | DOI

[18] V. I. Vasil'ev, M. V. Vasilyeva, A. M. Kardashevsky, “The numerical solution of the boundary inverse problem for a parabolic equation”, AIP Conf. Proc., 1773 (2016), 110011 | DOI

[19] V. I. Vasil'ev, A. M. Kardashevskii, “Iterative solution of the retrospective inverse problem for a parabolic equation using the conjugate gradient method”, Lect. Notes Comput. Sci., 10187, 2017, 698–705 | DOI | MR

[20] G. A. Prokopev, V. I. Vasilev, A. M. Kardashevskii, P. V. Sivtsev, “Chislennoe reshenie obratnoi zadachi Koshi dlya ellipticheskogo uravneniya”, Sib. elektron. mat. izv, 14 (2017), 308–316 | MR

[21] J. Huang, A. Li, V. I. Vasil'ev, A. M. Kardashevsky, L. Su, “Numerical method for solving the inverse problem of fractional parabolic equation”, J. Comput. Appl. Math., 413 (2022), 114366 | DOI | MR

[22] V. I. Vasil'ev, A. M.Kardashevskii, “Numerical solution of the retrospective inverse problem of heat conduction with the help of the Poisson integral”, J. Appl. Indust. Math, 12:3 (2018), 577–586 | DOI | MR

[23] P. N. Vabishchevich, V. I. Vasil'ev, “Computational determination of the lowest order coefficient in a parabolic equation”, Dokl. Math, 89:2 (2014), 179–181 | DOI | MR

[24] P. N. Vabischevich, V. I. Vasilev, M. V. Vasileva, “Vychislitelnaya identifikatsiya pravoi chasti parabolicheskogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 55:6 (2015), 1020–1027

[25] P. N. Vabishchevich, V. I. Vasil'ev, “Computational algorithms for solving the coefficient inverse problem for parabolic equations”, Inverse Probl. Sci. Engrg, 24:1 (2016), 42–59 | DOI | MR

[26] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978

[27] A. Savitzky, M. J.E. Golay, “Smoothing and differentiation of data by simplified least squares procedures”, Anal. Chemistry, 36:8 (1964), 1627–39 | DOI

[28] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1989

[29] P. N. Vabischevich, Chislennye metody resheniya nestatsionarnykh zadach, Lenand, M., 2021

[30] G. I. Marchuk, Metody vychislitelnoi matematiki, Nauka, M., 1977 | MR