Localization of an unstable solution
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 221-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we study certain nonlinear autonomous systems of three nonlinear ordinary differential equations (ODEs) with small parameter $\mu$ such that the two variables $(x,y)$ are fast and the other $z$ is slow. Taking the limit as $\mu \to 0$, this becomes the «degenerate system» that is included in the one-parameter family of the two-dimensional subsystems of fast motions with the parameter $z$ from some interval. It is assumed that there is a monotonic function $\boldsymbol \rho(z)$, which in the three-dimensional phase space of a complete dynamical system defines a parametrization of some arc ${\mathcal L}$ of a slow curve consisting of the family of fixed points of the degenerate subsystems. Let ${\mathcal L}$ have the two points of the Andronov—Hopf bifurcation, in which some stable limit cycles arise and disappear in the two-dimensional subsystems. These bifurcation points divide ${\mathcal L}$ into the three arcs: the two arcs are stable and the third arc between them is unstable. For the complete dynamical system we prove the existence of a trajectory which is located as close as possible to the both stable and unstable branches of the slow curve ${\mathcal L}$ as $\mu$ tends to zero and values of $z$ for the given interval.
Mots-clés : Andronov—Hopf bifurcation
Keywords: nonlinear ordinary differential equations (ODEs), ODEs with a small parameter, asymptotic expansion, Lyapunov function. .
@article{SJIM_2022_25_4_a16,
     author = {G. A. Chumakov and N. A. Chumakova},
     title = {Localization of an unstable solution},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {221--238},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a16/}
}
TY  - JOUR
AU  - G. A. Chumakov
AU  - N. A. Chumakova
TI  - Localization of an unstable solution
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 221
EP  - 238
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a16/
LA  - ru
ID  - SJIM_2022_25_4_a16
ER  - 
%0 Journal Article
%A G. A. Chumakov
%A N. A. Chumakova
%T Localization of an unstable solution
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 221-238
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a16/
%G ru
%F SJIM_2022_25_4_a16
G. A. Chumakov; N. A. Chumakova. Localization of an unstable solution. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 221-238. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a16/

[1] G. A. Chumakov, N. A. Chumakova, E. A. Lashina, “Modeling the complex dynamics of heterogeneous catalytic reactions with fast, intermediate, and slow variables”, Chem. Engrg. J., 282 (2015), 11–19 | DOI

[2] A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Maier, Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR

[3] G. A. Chumakov, N. A. Chumakova, “Relaxation oscillations in a kinetic model of catalytic hydrogen oxidation involving a chase on canards”, Chem. Engrg. J., 91 (2003), 151–158 | DOI

[4] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970

[5] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatlit, M., 1959

[6] Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verl, N.Y., 1998 | MR

[7] A. K. Zvonkin, M. A. Shubin, “Nestandartnyi analiz i singulyarnye vozmuscheniya obyknovennykh differentsialnykh uravnenii”, Uspekhi mat. nauk, 39:2 (1984), 77–127 | MR

[8] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teopii singulyapnykh vozmuschenii, Vysshaya shkola, M., 1990

[9] J. Guckenheimer, Ph. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verl, N.Y., 1997 | MR

[10] Kh. V. Brur, F. Dyumorte, S. van Strin, F. Takens, Struktury v dinamike. Konechnomernye determinirovannye sistemy, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003 | MR

[11] G. A. Chumakov, E. A. Lashina, N. A. Chumakova, “On estimation of the global error of numerical solution on canard-cycles”, Math. Comput. Simulation, 116 (2015), 59–74 | DOI | MR

[12] A. Abbondandolo, L. Asselle, G. Benedetti, M. Mazzucchelli, I. A. Taimanov, “The multiplicity problem for periodic orbits of magnetic flows on the 2-sphere”, Adv. Nonlinear Stud., 17:1 (2017), 17–30 | DOI | MR