On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 206-220

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider the Cauchy—Dirichlet problem for anisotropic parabolic equation with gradient term which does not satisfy Bernstein—Nagumo condition. The existence and uniqueness of viscosity solution for this problem is proved. This solution is Hølder continuous in time and Lipschitz continuous in spatial variables.
Mots-clés : anisotropic parabolic equations
Keywords: viscosity solutions, time-dependent exponents. .
@article{SJIM_2022_25_4_a15,
     author = {Ar. S. Tersenov},
     title = {On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {206--220},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a15/}
}
TY  - JOUR
AU  - Ar. S. Tersenov
TI  - On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 206
EP  - 220
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a15/
LA  - ru
ID  - SJIM_2022_25_4_a15
ER  - 
%0 Journal Article
%A Ar. S. Tersenov
%T On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 206-220
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a15/
%G ru
%F SJIM_2022_25_4_a15
Ar. S. Tersenov. On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 206-220. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a15/