On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 206-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider the Cauchy—Dirichlet problem for anisotropic parabolic equation with gradient term which does not satisfy Bernstein—Nagumo condition. The existence and uniqueness of viscosity solution for this problem is proved. This solution is Hølder continuous in time and Lipschitz continuous in spatial variables.
Mots-clés : anisotropic parabolic equations
Keywords: viscosity solutions, time-dependent exponents. .
@article{SJIM_2022_25_4_a15,
     author = {Ar. S. Tersenov},
     title = {On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {206--220},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a15/}
}
TY  - JOUR
AU  - Ar. S. Tersenov
TI  - On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 206
EP  - 220
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a15/
LA  - ru
ID  - SJIM_2022_25_4_a15
ER  - 
%0 Journal Article
%A Ar. S. Tersenov
%T On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 206-220
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a15/
%G ru
%F SJIM_2022_25_4_a15
Ar. S. Tersenov. On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 206-220. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a15/

[1] E. Acerbi, G. Mingione, “Regularity results for stationary electro-rheological fluids”, Arch. Ration. Mech. Anal, 164 (2002), 213–259 | DOI | MR

[2] S. N. Antontsev, J. F. Rodrigues, “On stationary thermo-rheological viscous flows”, Ann. Univ. Ferrara. Sez. VII Sci. Math, 52 (2006), 19–36 | DOI | MR

[3] K. Rajagopal, M. Ružička, “Mathematical modelling of electro-rheological fluids”, Continuum Mech. Thermodyn., 13 (2001), 59–78 | DOI | MR

[4] M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748, Springer-Verl, Berlin, 2000 | MR

[5] R. Aboulaicha, D. Meskinea, A. Souissia, “New diffusion models in image processing”, Comput. Math. Appl, 56 (2008), 874–882 | DOI | MR

[6] Y. Chen, S. Levine, M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math, 66 (2006), 1383–1406 | DOI | MR

[7] S. Antontsev, S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, Atlantis Studies in Differential Equations, 4, Atlantis Press, 2015 | DOI | MR

[8] M. Belloni, B. Kawohl, “The pseudo-p-Laplace eigenvalue problem and viscosity solutions as $p\to\infty$”, ESAIM: Control Optim. Calc. Variations, 10 (2004), 28–52 | DOI | MR

[9] I. Birindelli, F. Demengel, “Existence and regularity results for fully nonlinear operators on the model of the pseudo Pucci's operators”, J. Elliptic Parabolic Equ, 2 (2016), 171–187 | DOI | MR

[10] F. Demengel, “Lipschitz interior regularity for the viscosity and weak solutions of the pseudo p-Laplacian equation”, Adv. Differ. Equ., 21:3/4 (2016), 373–400 | MR

[11] P. Juutinen, “On the definition of viscosity solutions for parabolic equations”, Proc. Amer. Math. Soc., 129:10 (2001), 2907–2911 | DOI | MR

[12] Ar. S. Tersenov, “Viscosity subsolutions and supersolutions for non-uniformly and degenerate elliptic equations”, Arch. Math, 45:1 (2009), 19–35 | MR

[13] P. Juutinen, P. Lindqvist, J. J. Manfredi, “On the equivalence of the viscosity solutions and weak solutions for a quasilinear equation”, SIAM J. Math. Anal, 33:3 (2001), 699–717 | DOI | MR

[14] J. Siltakoski, “Equivalence of viscosity and weak solutions for a p-parabolic equation”, J. Evol. Equ, 21 (2021), 2047–2080 | DOI | MR

[15] H. Zhan, “On solutions of a parabolic equation with nonstandard growth condition”, J. Function Spaces, 2020 (2020), 9397620 | DOI | MR

[16] M. Bendahmane, K. H. Karlsen, “Nonlinear anisotropic elliptic and parabolic equations in $\mathbb{R}^N$ with advection and lower order terms and locally integrable data”, Potential Anal, 22 (2005), 207–227 | DOI | MR

[17] A. Dall-Aglio, D. Giachetti, S. Segura de Leon, “Global existence for parabolic problems involving the p-Laplacian and a critical gradient term”, Indiana Univ. Math. J., 58:1 (2009), 1–48 | DOI | MR

[18] D. G. Figueiredo, J. Sanchez, P. Ubilla, “Quasilinear equations with dependence on the gradient”, Nonlinear Anal, 71 (2009), 4862–4868 | DOI | MR

[19] Y. Fu, N. Pan, “Existence of solutions for nonlinear parabolic problem with p(x)-growth”, J. Math. Anal. Appl, 362 (2010), 313–326 | DOI | MR

[20] L. Iturriaga, S. Lorca, J. Sanchez, “Existence and multiplicity results for the p-Laplacian with a p-gradient term”, Nonlinear Differ. Equ. Appl, 15 (2008), 729–743 | DOI | MR

[21] J. Li, Yin J, Y. Ke, “Existence of positive solutions for the p-Laplacian with p-gradient term”, J. Math. Anal. Appl, 383 (2011), 147–158 | DOI | MR

[22] M. Nakao, C. Chen, “Global existence and gradient estimates for the quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term”, J. Differ. Equ, 162 (2000), 224–250 | DOI | MR

[23] H. Zhan, “On anisotropic parabolic equations with a nonlinear convection term depending on the spatial variable”, Adv. Differ. Equ, 2019:27 (2019), 1–26 | MR

[24] J. Zhao, “Existence and nonexistence of solutions for $u_t = \mathrm{div}(|\nabla u|^{p-2}\nabla u) + f(\nabla u, u, x, t)$”, J. Math. Anal. Appl, 172:1 (1993), 130–146 | DOI | MR

[25] V. Bogelein, F. Duzaar, P. Marcellini, “Parabolic equations with p, q-growth”, J. Math. Pures Appl, 100 (2013), 535–563 | DOI | MR

[26] Al. S. Tersenov, Ar. S. Tersenov, “Existence results for anisotropic quasilinear parabolic equations with time-dependent exponents and gradient term”, J. Math. Anal. Appl. 2019, 480, 123386 | DOI | MR

[27] Ar. S. Tersenov, “Razreshimost zadachi Dirikhle dlya anizotropnykh parabolicheskikh uravnenii v nevypuklykh oblastyakh”, Sib. zhurn. industr. matematiki, 25:1 (2022), 131–146

[28] Al. S. Tersenov, Ar. S. Tersenov, “O kvazilineinykh parabolicheskikh uravneniyakh s peremennym pokazatelem anizotropnosti”, Sib. mat. zhurn., 61:3 (2020), 201–223

[29] L. Wang, “On the regularity theory of fully nonlinear parabolic equation I”, Comm. Pure Appl. Math, 45 (1992), 27–76 | DOI | MR

[30] M. Crandall, H. Ishii, P. L. Lions, “User's guide to viscosity solutions of second order partial differential equations”, Bull. AMS, 27:1 (1992), 1–67 | DOI | MR

[31] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[32] B. H. Gilding, “Hölder continuity of solutions of parabolic equations”, J. London Math. Soc., 13:1 (1976), 103–106 | DOI | MR

[33] S. N. Kruzhkov, “Kvazilineinye parabolicheskie uravneniya i sistemy s dvumya nezavisimymi peremennymi”, Trudy seminara im. I. G. Petrovskogo, 5, 1979, 217–272

[34] H. Ishii, “On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE's”, Comm. Pure Appl. Math., 42 (1989), 14–45 | DOI | MR

[35] H. Ishii, P. L. Lions, “iscosity solutions of fully nonlinear second-order elliptic partial differential equations”, J. Differ. Equ, 83 (1990), 26–78 | DOI | MR