Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_4_a15, author = {Ar. S. Tersenov}, title = {On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {206--220}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a15/} }
TY - JOUR AU - Ar. S. Tersenov TI - On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 206 EP - 220 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a15/ LA - ru ID - SJIM_2022_25_4_a15 ER -
%0 Journal Article %A Ar. S. Tersenov %T On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 206-220 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a15/ %G ru %F SJIM_2022_25_4_a15
Ar. S. Tersenov. On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 206-220. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a15/
[1] E. Acerbi, G. Mingione, “Regularity results for stationary electro-rheological fluids”, Arch. Ration. Mech. Anal, 164 (2002), 213–259 | DOI | MR
[2] S. N. Antontsev, J. F. Rodrigues, “On stationary thermo-rheological viscous flows”, Ann. Univ. Ferrara. Sez. VII Sci. Math, 52 (2006), 19–36 | DOI | MR
[3] K. Rajagopal, M. Ružička, “Mathematical modelling of electro-rheological fluids”, Continuum Mech. Thermodyn., 13 (2001), 59–78 | DOI | MR
[4] M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748, Springer-Verl, Berlin, 2000 | MR
[5] R. Aboulaicha, D. Meskinea, A. Souissia, “New diffusion models in image processing”, Comput. Math. Appl, 56 (2008), 874–882 | DOI | MR
[6] Y. Chen, S. Levine, M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math, 66 (2006), 1383–1406 | DOI | MR
[7] S. Antontsev, S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, Atlantis Studies in Differential Equations, 4, Atlantis Press, 2015 | DOI | MR
[8] M. Belloni, B. Kawohl, “The pseudo-p-Laplace eigenvalue problem and viscosity solutions as $p\to\infty$”, ESAIM: Control Optim. Calc. Variations, 10 (2004), 28–52 | DOI | MR
[9] I. Birindelli, F. Demengel, “Existence and regularity results for fully nonlinear operators on the model of the pseudo Pucci's operators”, J. Elliptic Parabolic Equ, 2 (2016), 171–187 | DOI | MR
[10] F. Demengel, “Lipschitz interior regularity for the viscosity and weak solutions of the pseudo p-Laplacian equation”, Adv. Differ. Equ., 21:3/4 (2016), 373–400 | MR
[11] P. Juutinen, “On the definition of viscosity solutions for parabolic equations”, Proc. Amer. Math. Soc., 129:10 (2001), 2907–2911 | DOI | MR
[12] Ar. S. Tersenov, “Viscosity subsolutions and supersolutions for non-uniformly and degenerate elliptic equations”, Arch. Math, 45:1 (2009), 19–35 | MR
[13] P. Juutinen, P. Lindqvist, J. J. Manfredi, “On the equivalence of the viscosity solutions and weak solutions for a quasilinear equation”, SIAM J. Math. Anal, 33:3 (2001), 699–717 | DOI | MR
[14] J. Siltakoski, “Equivalence of viscosity and weak solutions for a p-parabolic equation”, J. Evol. Equ, 21 (2021), 2047–2080 | DOI | MR
[15] H. Zhan, “On solutions of a parabolic equation with nonstandard growth condition”, J. Function Spaces, 2020 (2020), 9397620 | DOI | MR
[16] M. Bendahmane, K. H. Karlsen, “Nonlinear anisotropic elliptic and parabolic equations in $\mathbb{R}^N$ with advection and lower order terms and locally integrable data”, Potential Anal, 22 (2005), 207–227 | DOI | MR
[17] A. Dall-Aglio, D. Giachetti, S. Segura de Leon, “Global existence for parabolic problems involving the p-Laplacian and a critical gradient term”, Indiana Univ. Math. J., 58:1 (2009), 1–48 | DOI | MR
[18] D. G. Figueiredo, J. Sanchez, P. Ubilla, “Quasilinear equations with dependence on the gradient”, Nonlinear Anal, 71 (2009), 4862–4868 | DOI | MR
[19] Y. Fu, N. Pan, “Existence of solutions for nonlinear parabolic problem with p(x)-growth”, J. Math. Anal. Appl, 362 (2010), 313–326 | DOI | MR
[20] L. Iturriaga, S. Lorca, J. Sanchez, “Existence and multiplicity results for the p-Laplacian with a p-gradient term”, Nonlinear Differ. Equ. Appl, 15 (2008), 729–743 | DOI | MR
[21] J. Li, Yin J, Y. Ke, “Existence of positive solutions for the p-Laplacian with p-gradient term”, J. Math. Anal. Appl, 383 (2011), 147–158 | DOI | MR
[22] M. Nakao, C. Chen, “Global existence and gradient estimates for the quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term”, J. Differ. Equ, 162 (2000), 224–250 | DOI | MR
[23] H. Zhan, “On anisotropic parabolic equations with a nonlinear convection term depending on the spatial variable”, Adv. Differ. Equ, 2019:27 (2019), 1–26 | MR
[24] J. Zhao, “Existence and nonexistence of solutions for $u_t = \mathrm{div}(|\nabla u|^{p-2}\nabla u) + f(\nabla u, u, x, t)$”, J. Math. Anal. Appl, 172:1 (1993), 130–146 | DOI | MR
[25] V. Bogelein, F. Duzaar, P. Marcellini, “Parabolic equations with p, q-growth”, J. Math. Pures Appl, 100 (2013), 535–563 | DOI | MR
[26] Al. S. Tersenov, Ar. S. Tersenov, “Existence results for anisotropic quasilinear parabolic equations with time-dependent exponents and gradient term”, J. Math. Anal. Appl. 2019, 480, 123386 | DOI | MR
[27] Ar. S. Tersenov, “Razreshimost zadachi Dirikhle dlya anizotropnykh parabolicheskikh uravnenii v nevypuklykh oblastyakh”, Sib. zhurn. industr. matematiki, 25:1 (2022), 131–146
[28] Al. S. Tersenov, Ar. S. Tersenov, “O kvazilineinykh parabolicheskikh uravneniyakh s peremennym pokazatelem anizotropnosti”, Sib. mat. zhurn., 61:3 (2020), 201–223
[29] L. Wang, “On the regularity theory of fully nonlinear parabolic equation I”, Comm. Pure Appl. Math, 45 (1992), 27–76 | DOI | MR
[30] M. Crandall, H. Ishii, P. L. Lions, “User's guide to viscosity solutions of second order partial differential equations”, Bull. AMS, 27:1 (1992), 1–67 | DOI | MR
[31] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[32] B. H. Gilding, “Hölder continuity of solutions of parabolic equations”, J. London Math. Soc., 13:1 (1976), 103–106 | DOI | MR
[33] S. N. Kruzhkov, “Kvazilineinye parabolicheskie uravneniya i sistemy s dvumya nezavisimymi peremennymi”, Trudy seminara im. I. G. Petrovskogo, 5, 1979, 217–272
[34] H. Ishii, “On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE's”, Comm. Pure Appl. Math., 42 (1989), 14–45 | DOI | MR
[35] H. Ishii, P. L. Lions, “iscosity solutions of fully nonlinear second-order elliptic partial differential equations”, J. Differ. Equ, 83 (1990), 26–78 | DOI | MR