Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_4_a13, author = {V. V. Skazka}, title = {Skew-symmetric difference analogs of the fourth order of approximation of the first derivative}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {179--192}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a13/} }
TY - JOUR AU - V. V. Skazka TI - Skew-symmetric difference analogs of the fourth order of approximation of the first derivative JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 179 EP - 192 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a13/ LA - ru ID - SJIM_2022_25_4_a13 ER -
%0 Journal Article %A V. V. Skazka %T Skew-symmetric difference analogs of the fourth order of approximation of the first derivative %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 179-192 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a13/ %G ru %F SJIM_2022_25_4_a13
V. V. Skazka. Skew-symmetric difference analogs of the fourth order of approximation of the first derivative. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 179-192. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a13/
[1] A. A. Samarskii, Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971
[2] A. N. Konovalov, “Dinamicheskaya zadacha teorii uprugosti v postanovke «skorosti-napryazheniya»”, Differents. uravneniya, 35:2 (1999), 238–248 | MR
[3] S. K. Godunov, V. T. Zhukov, O. B. Feodoritova, “Metod rascheta invariantnykh podprostranstv dlya simmetricheskikh giperbolicheskikh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 46:6 (2006), 1041–1053
[4] C. W. Rowley, T. Colonius, “Discritely nonreflecting boudary conditions for linear hyperobolic systems”, J. Comput. Phys., 1577 (2000), 500–538 | DOI | MR
[5] L. V. Dorodnitsyn, “Raznostnye granichnye usloviya vysokoi tochnosti dlya dvumernykh zadach aeroakustiki”, Mat. modelirovanie, 23:11 (2011), 131–154 | MR
[6] G. Baruch, G. Fibich, S. Tsynkov, “High-order numerical solution of the nonlinear Helmholtz equation with axial symmetry”, J. Comput. Appl. Math, 207:2 (2007), 477–92 | DOI | MR
[7] F. Smith, S. Tsynkov, E. Turkel, “Compact high order accurate schemes for the three dimensional wave equation”, J. Sci. Comput, 81:3 (2019), 1181–1209 | DOI | MR
[8] A. Zlotnik, R. Ciegis, “A compact higher-order finite-difference scheme for the wave equation can be strongly non-dissipative on non-uniform meshes”, Appl. Math. Letters, 115 (2021), 106949 | DOI | MR
[9] D. Deng, C. Zhang, “Analysis of a fourth-order compact ADI method for a linear hyperbolic equation with three spatial variables”, Numer. Algorithms, 63:1 (2013), 1–26 | DOI | MR
[10] Z. Xing, L. Wen, H. Xiao, “A fourth-order conservative difference scheme for the Riesz space-fractional Sine-Gordon equations and its fast implementation”, Appl. Numer. Math, 159 (2021), 221–238 | DOI | MR