Skew-symmetric difference analogs of the fourth order of approximation of the first derivative
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 179-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let there be an initial boundary value problem for a system of first-order hyperbolic equations that has an integral conservation law. One of the options for the numerical solution of this kind of problem is the construction of a difference scheme for spatial variables, followed by the solution of the resulting system of ordinary differential equations.For the stability of the solution of this ODE system, it is desirable that it has the first integral, which is an analogue of the conservation law for the original problem. For this purpose, an antisymmetric difference analogue of the first derivative of the fourth order of approximation is constructed.
Keywords: finite difference approximation of the derivative, fourth order approximation, integral conservation law. .
@article{SJIM_2022_25_4_a13,
     author = {V. V. Skazka},
     title = {Skew-symmetric difference analogs of the fourth order of approximation of the first derivative},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {179--192},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a13/}
}
TY  - JOUR
AU  - V. V. Skazka
TI  - Skew-symmetric difference analogs of the fourth order of approximation of the first derivative
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 179
EP  - 192
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a13/
LA  - ru
ID  - SJIM_2022_25_4_a13
ER  - 
%0 Journal Article
%A V. V. Skazka
%T Skew-symmetric difference analogs of the fourth order of approximation of the first derivative
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 179-192
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a13/
%G ru
%F SJIM_2022_25_4_a13
V. V. Skazka. Skew-symmetric difference analogs of the fourth order of approximation of the first derivative. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 179-192. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a13/

[1] A. A. Samarskii, Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971

[2] A. N. Konovalov, “Dinamicheskaya zadacha teorii uprugosti v postanovke «skorosti-napryazheniya»”, Differents. uravneniya, 35:2 (1999), 238–248 | MR

[3] S. K. Godunov, V. T. Zhukov, O. B. Feodoritova, “Metod rascheta invariantnykh podprostranstv dlya simmetricheskikh giperbolicheskikh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 46:6 (2006), 1041–1053

[4] C. W. Rowley, T. Colonius, “Discritely nonreflecting boudary conditions for linear hyperobolic systems”, J. Comput. Phys., 1577 (2000), 500–538 | DOI | MR

[5] L. V. Dorodnitsyn, “Raznostnye granichnye usloviya vysokoi tochnosti dlya dvumernykh zadach aeroakustiki”, Mat. modelirovanie, 23:11 (2011), 131–154 | MR

[6] G. Baruch, G. Fibich, S. Tsynkov, “High-order numerical solution of the nonlinear Helmholtz equation with axial symmetry”, J. Comput. Appl. Math, 207:2 (2007), 477–92 | DOI | MR

[7] F. Smith, S. Tsynkov, E. Turkel, “Compact high order accurate schemes for the three dimensional wave equation”, J. Sci. Comput, 81:3 (2019), 1181–1209 | DOI | MR

[8] A. Zlotnik, R. Ciegis, “A compact higher-order finite-difference scheme for the wave equation can be strongly non-dissipative on non-uniform meshes”, Appl. Math. Letters, 115 (2021), 106949 | DOI | MR

[9] D. Deng, C. Zhang, “Analysis of a fourth-order compact ADI method for a linear hyperbolic equation with three spatial variables”, Numer. Algorithms, 63:1 (2013), 1–26 | DOI | MR

[10] Z. Xing, L. Wen, H. Xiao, “A fourth-order conservative difference scheme for the Riesz space-fractional Sine-Gordon equations and its fast implementation”, Appl. Numer. Math, 159 (2021), 221–238 | DOI | MR