Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_4_a12, author = {E. U. Seliverstov}, title = {Hierarchical method of parameter setting for population-based metaheuristic optimization algorithms}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {164--178}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a12/} }
TY - JOUR AU - E. U. Seliverstov TI - Hierarchical method of parameter setting for population-based metaheuristic optimization algorithms JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 164 EP - 178 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a12/ LA - ru ID - SJIM_2022_25_4_a12 ER -
%0 Journal Article %A E. U. Seliverstov %T Hierarchical method of parameter setting for population-based metaheuristic optimization algorithms %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 164-178 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a12/ %G ru %F SJIM_2022_25_4_a12
E. U. Seliverstov. Hierarchical method of parameter setting for population-based metaheuristic optimization algorithms. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 164-178. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a12/
[1] K. A. De Jong, Evolutionary Computation: A Unified Approach, Springer-Verl, Cambridge, 2006 | MR
[2] J. Kennedy, R. Eberhart, Swarm Intelligence, Morgan Kaufmann, San Francisco, 2001
[3] M. Clerc, Particle Swarm Optimization, Wiley-ISTE, London, 2006 | MR
[4] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, E. Cosar, “A survey on new generation metaheuristic algorithms”, Comput. Indust. Engrg, 137 (2019) | DOI
[5] T. Bäck, D. Fogel, Z. Michalewicz, Evolutionary Computation 2: Advanced Algorithms and Operations, Institute of Physics Publ, Philadelphia, 2000 | MR
[6] Y. Lorion, T. Bogon, I. J. Timm, O. Drobnik, “An agent based parallel particle swarm optimization APPSO”, IEEE Swarm Intelligence Symp., 2009, 52–59 | DOI
[7] B. Niu, Y. Zhu, X. He, H. Wu, “MCPSO: A multi-swarm cooperative particle swarm optimizer”, Appl. Math. Comput. Special Iss. Intelligent Comput. Theory and Methodology, 185:2 (2008), 1050–1062 | DOI | MR
[8] K. De Jong, “Parameter setting in EAs: a 30 year perspective”, Parameter Setting in Evolutionary Algorithms. Studies Comput. Intelligence, 54 (2007), 1–18 | DOI
[9] S. Smit, A. Eiben, “Comparing parameter tuning methods for evolutionary algorithms”, Proc. 2009 IEEE Congress on Evolutionary Comput., 2009, 399–406 | DOI
[10] A. E. Eiben, S. K. Smit, “Parameter tuning for configuring and analyzing evolutionary algorithms”, Swarm and Evolutionary Comput., 1 (2011), 19–31 | DOI
[11] A. Eiben, Z. Michalewicz, M. Schoenauer, J. Smith, “Parameter control in evolutionary algorithms”, Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, 54 (2007), 19–46 | DOI
[12] Z. Zhan, J. Zhang, Y, Li, H. Chung, “Adaptive particle swarm optimization”, IEEE Trans. Systems, Man, and Cybernetics. Part B: Cybernetics, 39:6 (2009), 1362–1381 | DOI | MR
[13] E. Seliverstov, A. Karpenko, “Hierarchical model of parallel metaheuristic optimization algorithms”, Procedia Computer Science, 150, Proc 13 Internat. Symp. «Intelligent Systems 2018» (INTELS-18) (2019), 441–449 | DOI
[14] J. Nocedal, S. Wright, Numerical Optimization, Springer Sci. Business Media, N.Y., 2006 | MR
[15] R. Mendes, J. Kennedy, J. Neves, “The fully informed particle swarm: Simpler, maybe better”, IEEE Trans. Evolutionary Comput., 8 (2004), 204–210 | DOI
[16] I. Griva, S. Nash, A. Sofer, Linear and Nonlinear Optimization, Soc. Indust. Appl. Math., Philadelphia, 2008 | MR
[17] X. Li, K. Tang, M. N. Omidvar, Z. Yang, K. Qin, H. China, Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization, Technical Report, Evolutionary Computation and Machine Learning Group, RMIT, 2013
[18] M. R. Bonyadi, Z. Michalewicz, “Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm”, IEEE Trans. Evolutionary Comput., 20:3 (2016), 370–385 | DOI
[19] F. V. Bergh, A. P. Engelbrecht, “A convergence proof for the particle swarm optimiser”, Fund. Informat., 105:4 (2010), 341–374 | DOI | MR