Contact problem of bending of a multilayer composite plate taking into account different moduli of elasticity for tension and compression
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 153-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the contact problem of bending a multilayer composite plate. Each layer of the composite is a material reinforced with thin parallel fibers. The mathematical model is constructed based on the assumptions of the existence of a neutral surface in the plate and the fulfillment of Kirchhoff's hypotheses. Using the Lagrange variational principle, the bending equation generalizing the Sophie—Germain equation is obtained. The elastic energy functional is obtained taking into account the different resistance of the material to tension and compression. The contact problem of bending plates and membranes with the of a rigid contact is considered. To solve the contact problem of bending a plate with a rigid stamp, a Lagrangian was constructed with a constraint in the form of an inequality. For the numerical solution of the problem, the finite element method using the triangular Bell element was applied. The results of calculations of the bending of laminated rectangular plates with different directions of fiber laying and different shapes of the stamp are presented.
Mots-clés : fibrous composite, FEM. .
Keywords: thin plate, technical theory of the plates, bending state, contact problem, multi-modulus theory of elasticity, principle of minimum potential energy
@article{SJIM_2022_25_4_a11,
     author = {I. E. Petrakov},
     title = {Contact problem of bending of a multilayer composite plate taking into account different moduli of elasticity for tension and compression},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {153--163},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a11/}
}
TY  - JOUR
AU  - I. E. Petrakov
TI  - Contact problem of bending of a multilayer composite plate taking into account different moduli of elasticity for tension and compression
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 153
EP  - 163
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a11/
LA  - ru
ID  - SJIM_2022_25_4_a11
ER  - 
%0 Journal Article
%A I. E. Petrakov
%T Contact problem of bending of a multilayer composite plate taking into account different moduli of elasticity for tension and compression
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 153-163
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a11/
%G ru
%F SJIM_2022_25_4_a11
I. E. Petrakov. Contact problem of bending of a multilayer composite plate taking into account different moduli of elasticity for tension and compression. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 153-163. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a11/

[1] S. A. Ambartsumyan, A. A. Khachatryan, “K raznomodulnoi teorii uprugosti”, Inzh. zhurn. Mekhanika tverdogo tela, 1966, no. 6, 64–67

[2] N. M. Matchenko, L. A. Tolokonnikov, “O svyazi mezhdu napryazheniyami i deformatsiyami v raznomodulnykh izotropnykh sredakh”, Izv. AN SSSR. Mekhanika tverdogo tela, 1968, no. 6, 108–111

[3] A. S. Kravchuk, V. P. Maiboroda, Yu. S. Urzhumtsev, “Mekhanika polimernykh kompozitsionnykh materialov”, Eksperimentalnye i chislennye metody, 1985, Nauka, M. | MR

[4] D. E. Bessonov, Yu. P. Zezin, E. V. Lomakin, “Raznosoprotivlyaemost zernistykh kompozitov na osnove nenasyschennykh poliefirov”, Izv. Saratov. gos. un-ta. Novaya ser. Matematika. Mekhanika. Informatika, 9:4 (2) (2009), 9–13

[5] M. Meng, H. R. Le, M. J. Rizvi, S. M. Grove, “The effects of unequal compressive/tensile moduli of composites”, Composite Structures, 126 (2015), 207–215 | DOI

[6] S. A. Ambartsumyan, Raznomodulnaya teoriya uprugosti, Nauka, M., 1982 | MR

[7] J. Y. Sun, S. Xia, M. W. Moon, K. H. Oh, K. S. Kim, “Folding wrinkles of a thin stiff layer on a soft substrate”, Proc. Royal Soc. A: Math., Phys. Engrg Sci., 468:2140 (2012), 932–953

[8] K. I. Ipatov, A. S. Vasilev, V. L. Zemlyak, “Issledovanie vliyaniya poverkhnostnogo armirovaniya na nesuschuyu sposobnost lda”, Vychisl. mekhanika sploshnykh sred, 12:1 (2019), 98–105

[9] O. V. Yakimenko, V. V. Sirotyuk, Usilenie ledovykh pereprav geosinteticheskimi materialami, monografiya, izd. SibADI, Omsk, 2015

[10] B. D. Annin, V. M. Sadovskii, I. E. Petrakov, A. Yu. Vlasov, “Strong bending of a beam from a fibrous composite, differently resistant to tension and compression”, J. Siberian Federal Univ. Math. Phys., 12:5 (2019), 533–542 | DOI | MR

[11] B. P. Patel, K. Khan, Y. Nath, “A new constitutive model for bimodular laminated structures: application to free vibrations of conical/cylindrical panels”, Composite Structures, 110 (2014), 183–191 | DOI

[12] X. He, J. Sun, Z. Wang, Q. Chen, Z. Zheng, “General perturbation solution of large-deflection circular plate with different moduli in tension and compression under various edge conditions”, Internat. J. Nonlinear Mech., 55 (2013), 110–119 | DOI

[13] P. Rosakis, J. Notbohm, G. Ravichandran, “A model for compression-weakening materials and the elastic fields due to contractile cells”, J. Mech. Phys. Solids, 85 (2015), 16–32 | DOI | MR

[14] H. T. Yang, B. Wang, “An analysis of longitudinal vibration of bimodular rod via smoothing function approach”, J. Sound and Vibration, 317 (2008), 419–431 | DOI

[15] L. Zhang, Q. Gao, H. W. Zhang, “An efficient algorithm for mechanical analysis of bimodular truss and tensegrity structures”, Internat. J. Mech. Sci., 70 (2013), 57–68 | DOI | MR

[16] L. Zhang, K. J. Dong, H. T. Zhang, B. Yan, “A 3D PVP co-rotational formulation for large-displacement and small-strain analysis of bi-modulus materials”, Finite Elements in Analysis and Design, 110 (2015), 20–31 | DOI

[17] V. M. Sadovskii, O. V. Sadovskaya, I. E. Petrakov, “On the theory of constitutive equations for composites with different resistance in compression and tension”, Composite Structures, 268 (2021), 113921 | DOI

[18] I. E. Petrakov, V. M. Sadovskii, O. V. Sadovskaya, “Analiz izgiba kompozitnykh plastin s uchetom razlichiya soprotivlenii rastyazheniyu i szhatiyu”, Prikl. matematika i tekhn. fizika, 62:5 (2021), 172–183 | MR

[19] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976

[20] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[21] S. Pissanetski, Tekhnologiya razrezhennykh matrits, Mir, M., 1988 | MR