Supercomputer modelling of magnetohydrodynamical flows in cosmic plasma
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 14-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes a new numerical method for solving the equations of ideal magnetohydrodynamics (MHD) based on the Godunov method, a combination of the Roe and Rusanov schemes, and a piecewise parabolic representation of the solution. The hybrid scheme for solving the Riemann problem is associated with the possibility to reproduce the numerical solution without singularities along the directions, which is especially important when the velocity and magnetic field components are reconstructed in the transverse direction. The numerical method is implemented as a software package for massively parallel supercomputers. On the NKS-1P cluster of the SSCC, studies of parallel implementation and computational experiments were carried out. A problem with an analytical solution was used as a test for the method verification. A numerical solution of the problem of the interaction of a of molecular hydrogen cloud with the incoming interstellar medium is considered.
Keywords: mathematical modelling, supercomputing, computational physics. .
@article{SJIM_2022_25_4_a1,
     author = {M. A. Boronina and I. M. Kulikov and I. G. Chernykh and D. V. Weins},
     title = {Supercomputer modelling of magnetohydrodynamical flows in cosmic plasma},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {14--26},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a1/}
}
TY  - JOUR
AU  - M. A. Boronina
AU  - I. M. Kulikov
AU  - I. G. Chernykh
AU  - D. V. Weins
TI  - Supercomputer modelling of magnetohydrodynamical flows in cosmic plasma
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 14
EP  - 26
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a1/
LA  - ru
ID  - SJIM_2022_25_4_a1
ER  - 
%0 Journal Article
%A M. A. Boronina
%A I. M. Kulikov
%A I. G. Chernykh
%A D. V. Weins
%T Supercomputer modelling of magnetohydrodynamical flows in cosmic plasma
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 14-26
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a1/
%G ru
%F SJIM_2022_25_4_a1
M. A. Boronina; I. M. Kulikov; I. G. Chernykh; D. V. Weins. Supercomputer modelling of magnetohydrodynamical flows in cosmic plasma. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 14-26. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a1/

[1] A. Fletcher, R. Beck, A. Shukurov, E. Berkhuijsen, C. Horellou, “Magnetic fields and spiral arms in the galaxy M51”, Monthly Notices Royal Astronom. Soc., 412:4 (2011), 2396–2416 | DOI

[2] R. Pakmor, V. Springel, “Simulations of magnetic fields in isolated disc galaxies”, Monthly Notices Royal Astronom. Soc., 432:1 (2013), 176–193 | DOI

[3] E. Villaver, A. Manchado, G. Garcia-Segura, “The interaction of asymptotic giant branch stars with the interstellar medium”, Astrophys. J., 748:2 (2012), 94 | DOI | MR

[4] I. Kulikov, I. Chernykh, V. Protasov, “The numerical modelling of MHD astrophysical flows with chemistry”, J. Phys. Conf. Ser., 894 (2017), 012132 | DOI

[5] J. Stone et al, “Athena: A new code for astrophysical MHD”, Astrophys. J. Suppl. Ser., 178 (2008), 137–177 | DOI

[6] A. Brandenburg, W. Dobler, “Hydromagnetic turbulence in computer simulations”, Comput. Phys. Comm., 147 (2002), 471–475 | DOI

[7] J. Hayes et al, “Simulating radiating and magnetized flows in multiple dimensions with ZEUS-MP”, Astrophys. J. Suppl. Ser., 165 (2006), 188–228 | DOI

[8] I. Kulikov, “A new code for the numerical simulation of relativistic flows on supercomputers by means of a low-dissipation scheme”, Comput. Phys. Comm., 257 (2020), 107532 | DOI | MR

[9] I. Kulikov, I. Chernykh, A. Tutukov, “A new hydrodynamic code with explicit vectorization instructions optimizations that is dedicated to the numerical simulation of astrophysical gas flow. I. Numerical method, tests, and model problems”, Astrophys. J. Suppl. Ser., 243 (2019), 4 | DOI

[10] I. Kulikov, E. Vorobyov, “Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows”, J. Comput. Phys., 317 (2016), 318–346 | DOI | MR

[11] H. Nishikawa, K. Kitamura, “Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers”, J. Comput. Phys., 227 (2008), 2560–2581 | DOI | MR

[12] R. Keppens, “Nonlinear magnetohydrodynamics: numerical concepts”, Fusion Sci. Technology, 45:2 (2004), 107–114 | DOI