Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_3_a9, author = {A. V. Minakov and A. S. Lobasov and A. V. Shebelev and D. V. Zaicev and O. A. Kabov}, title = {Flow regimes of a liquid film carried away by a gas flow in a flat horizontal channel under isothermal conditions}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {104--119}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a9/} }
TY - JOUR AU - A. V. Minakov AU - A. S. Lobasov AU - A. V. Shebelev AU - D. V. Zaicev AU - O. A. Kabov TI - Flow regimes of a liquid film carried away by a gas flow in a flat horizontal channel under isothermal conditions JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 104 EP - 119 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a9/ LA - ru ID - SJIM_2022_25_3_a9 ER -
%0 Journal Article %A A. V. Minakov %A A. S. Lobasov %A A. V. Shebelev %A D. V. Zaicev %A O. A. Kabov %T Flow regimes of a liquid film carried away by a gas flow in a flat horizontal channel under isothermal conditions %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 104-119 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a9/ %G ru %F SJIM_2022_25_3_a9
A. V. Minakov; A. S. Lobasov; A. V. Shebelev; D. V. Zaicev; O. A. Kabov. Flow regimes of a liquid film carried away by a gas flow in a flat horizontal channel under isothermal conditions. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 104-119. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a9/
[1] K. A. Bar-Cohen, P. Wang, “Thermal management of on-chip hot spots”, J. Heat Transfer., 134 (2012), 051017
[2] K. A. Bar-Cohen, A. A. Wative, “Cooling Electric Equipment”, Mech. Engineers Handbook., Sect. 1. Chapt. 12, v. 4, 2015, 451–499
[3] D. B. Tuckerman, R. F.W. Pease, “High-performance heat sinking”, VLSI, IEEE Electron Device Lett., EDL-2:5 (1981), 126–129
[4] G. Swift, A. Migliori, J. Wheatley, “Construction of and measurements with an extremely compact crossflow heat exchanger”, Heat Transfer Engrg., 6:2 (1985), 39–46
[5] E. G. Colgan, B. Furman, M. Gaynes, W. S. Graham, N. C. LaBianca, J. H. Magerlein, R. R. Schmidt, “A practical implementation of silicon microchannel coolers for high power chips”, IEEE Trans. Components and Packaging Technologies, 30:2 (2007), 218–225
[6] J. A. Khan, A. K. M. M. M. Morshed, R. Fang, “Towards ultra-compact high heat flux microchannel heat sink”, Procedia Engrg., 90 (2014), 11–24
[7] S. G. Kandlikar, S. Colin, Y. Peles, S. Garimella, R. F. Pease, J. J. Brandner, D. B. Tuckerman, “Heat transfer in microchannels-2012 status and research needs”, J. Heat Transfer., 135:9 (2013), 091017
[8] P. Stephan, C. Brandt, “Advanced capillary structures for high performance heat pipes”, Proc. 1 Int. Conf. on Microchannels and Minichannels, Rochester–N. Y., 2003, 69–75
[9] C. Woodcock, C. Ng-oma, M. Sweet, Y. Wang, Y. Peles, “Ultra-high heat flux dissipation with Piranha Pin Fins”, Int. J. Heat and Mass Transfer, 128 (2019), 504–515
[10] M. H. Nasr, C. E. Green, P. A. Kottke, X. Zhang, T. E. Sarvey, Y. K. Joshi, M. S. Bakir, A. G. Fedorov, “Flow regimes and convective heat transfer of refrigerant flow boiling in ultra-small clearance microgaps”, Int. J. Heat and Mass Transfer, 108 (2017), 1702–1713
[11] O. A. Kabov, Yu. V. Lyulin, I. V. Marchuk, D. V. Zaitsev, “Locally heated shear-driven liquid films in microchannels and minichannels”, Int. J. Heat and Fluid Flow, 28 (2007), 103–112
[12] O. A. Kabov, D. V. Zaitsev, V. V. Cheverda, A. Bar-Cohen, “Evaporation and flow dynamics of thin, sheardriven liquid films in microgap channels”, Experimental Thermal and Fluid Sci, 35:825 (2011), 825–831
[13] O. Kabov, D. Zaitsev, E. Tkachenko, “Interfacial thermal fluid phenomena in shear-driven thin liquid films”, Proc. 16 Int. Heat Transfer Conf. (Beijing, China, 2018), 1061–1067 | DOI
[14] M. Potash, P. C. Jr. Wayner, “Evaporation from a two-dimensional extended meniscus”, Internat. J. Heat and Mass. Transfer, 15 (1972), 1851–1863
[15] P. C. Stephan, C. A. Busse, “Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls”, Internat. J. Heat and Mass. Transfer, 35 (1992), 383–391
[16] V. S. Ajaev, O. A. Kabov, “Heat and mass transfer near contact lines on heated surfaces”, Internat. J. Heat and Mass. Transfer, 108 (2017), 918–932
[17] A. L. Karchevsky, V. V. Cheverda, I. V. Marchuk, T. G. Ponomarenko, V. S. Sulyaeva, O. A. Kabov, “Heat flux density evaluation in the region of contact line of drop on a sapphire surface using infrared thermography measurements”, Microgravity Sci. Technol., 33 (2021), 53 | DOI
[18] N. Schweizer, P. Stephan, “Experimental study of bubble behavior and local heat flux in pool boiling under variable gravity conditions”, Multiphase Sci. Technol, 21 (2009), 329–350
[19] A. L. Karchevsky, I. V. Marchuk, O. A. Kabov, “Calculation of the heat flux near the liquid-gas-solid contact line”, Appl. Math. Model., 40 (2016), 1029–1037
[20] O. A. Kabov, D. V. Zaitsev, D. P. Kirichenko, V. S. Ajaev, “Investigation of moist air flow near contact line using microdroplets as tracers”, Interfacial Phenomena and Heat Transfer, 4:2-3 (2016), 207–216 | DOI
[21] M. Gibbons, P. Di Marco, A. J. Robinson, “Local heat transfer to an evaporating superhydrophobic droplet”, Internat. J. Heat and Mass. Transfer, 121 (2018), 641–652
[22] J. Jo, J. Kim, S. J. Kim, “Experimental investigations of heat transfer mechanisms of a pulsating heat pipe”, Energy Convers. Manag, 181 (2019), 331–341
[23] K. Schweikert, A. Sielaff, P. Stephan, “Heat flux during dipcoating of a superheated substrate”, Interfacial Phenom. Heat Transfer, 7 (2019), 269–281
[24] J. P. Burelbach, S. G. Bankoff, S. H. Davis, “Nonlinear stability of evaporating/condensing liquid film”, J. Fluid Mech., 195 (1988), 463–494
[25] O. E. Shklyaev, E. Fried, “Stability of an evaporating thin liquid film”, J. Fluid Mech., 584 (2007), 157–183
[26] E. Sultan, A. Boudaoud, M. Ben Amar, “Diffusion-limited evaporation of thin polar liquid films”, J. Engrg. Math., 50 (2004), 209–222
[27] E. Sultan, A. Boudaoud, M. Ben Amar, “Evaporation of a thin film: diffusion of the vapour and Marangoni instabilities”, J. Fluid Mech., 543 (2005), 183–202
[28] V. B. Bekezhanova, O. A. Kabov, “Influence of internal energy variations of the interface on the stability of film flow”, Interfacial Phenomena and Heat Transfer, 4:2-3 (2016), 133–156 | DOI
[29] E. Ya. Gatapova, O. A. Kabov, “Shear-driven flows of locally heated liquid films”, Int. J. Heat and Mass Transfer, 51:19-20 (2008), 4797–4810
[30] R. Liu, O. A. Kabov, “Instabilities in a horizontal liquid layer in cocurrent gas flow with an evaporating interface”, Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 85:6 (2012), 066305 | DOI
[31] Yu. O. Kabova, V. V. Kuznetsov, O. A. Kabov, T. Gambaryan-Roisman, P. Stephan, “Evaporation of a thin viscous liquid film sheared by gas in a microchannel”, Int. J. Heat and Mass Transfer, 68 (2014), 527–541 | DOI
[32] C. Redon, F. Brochard-Wyart, F. Rondelez, “Dynamics of Dewetting”, Phys. Review Letters, 66:6 (1991), 715–719
[33] V. S. Ajaev, “Instability and Rupture of Thin Liquid Films on Solid Substrates”, Interfacial Phenomena and Heat Transfer, 1:1 (2013), 81–92
[34] P. G. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer-Verl, 2004
[35] O. A. Kabov, “Breakdown of a liquid film flowing over the surface with a local heat source”, Thermophys. Aeromech., 7:4 (2000), 513–520
[36] D. V. Zaitsev, O. A. Kabov, A. R. Evseev, “Measurement of locally heated liquid film thickness by a doublefiber optical probe”, Experiments in Fluids, 34 (2003), 748–754
[37] D. V. Zaitsev, A. A. Semenov, O. A. Kabov, “Effect of viscosity on thermocapillary breakdown of a falling liquid film”, Thermophys. Aeromech., 23:4 (2016), 625–628
[38] N. Mulji, S. Chandra, “Rupture and dewetting of water films on solid surfaces”, J. Colloid and Interface Sci., 352:1 (2010), 194–201
[39] S. Kim, J. Kim, H. Y. Kim, “Formation, growth, and saturation of dry holes in thick liquid films under vapor-mediated Marangoni effect”, Phys. Fluids, 31 (2019), 112105
[40] D. Yu. Kochkin, D. V. Zaitsev, O. A. Kabov, “Thermocapillary rupture and contact line dynamics in the heated liquid layers”, Interfacial Phenomena and Heat Transfer, 8:1 (2020), 1–9 | DOI
[41] C. W. Hirt, B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Comput. Phys., 39 (1981), 201–225 | DOI
[42] J. U. Brackbill, D. B. Kothe, C. Zemach, “A continuum method for modeling surface tension”, J. Comput. Phys., 100 (1992), 335–354 | DOI
[43] R. L. Hoffman, “A study of the advancing interface I. Interface shape in liquid gas systems”, J. Colloid Interface Sci., 50:2 (1975), 228–241 | DOI
[44] R. G. Cox, “The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow”, J. Fluid Mech. 1986, 168, 169194 | DOI
[45] Y. D. Shikhmurzaev, “Moving contact lines in liquid/liquid/solid systems”, J. Fluid Mech., 334:1 (1997), 211–249
[46] S. F. Kistler, “Hydrodynamics of wetting”, Wettability, 49 (1993), 311–431
[47] A. V. Minakov, “Numerical algorithm for moving boundary fluid dynamics problems and its testing”, Comput. Math. Math. Phys., 54:10 (2014), 1560–1570 | DOI
[48] A. V. Minakov, A. A. Shebeleva, A. A. Yagodnitsyna, A. V. Kovalev, A. V. Bilsky, “Flow regimes of viscous immiscible liquids in t-type microchannels”, Chem. Engrg. Technology, 42:5 (2019), 1037–1044
[49] E. A. Chinnov, O. A. Kabov, “Two-phase flow in pipes and capillary channels”, High Temperatures, 44:5 (2006), 773–791
[50] G. Yadigaroglu, G. Hetsroni, G. F. Hewitt, “Flow Regimes”, Introduction to Multiphase Flow, Ch. 4, Springer-Verl., 2018, 95–140
[51] E. A. Chinnov, F. V. Ron-shin, O. A. Kabov, “Two-phase flow patterns in short horizontal rectangular microchannels”, Int. J. Multiphase Flow, 80 (2016), 57–68
[52] F. V. Ronshin, Y. A. Dementyev, E. A. Chinnov, V. V. Cheverda, O. A. Kabov, “Experimental investigation of adiabatic gas-liquid flow regimes and pressure drop in slit microchannel”, Microgravity Science and Technology, 31:5 (2019), 693–707