On the geometric definition of the hinge mechanism, Kempe's theorem and overripe mathematics
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 41-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides a definition of the hinge mechanism, taking into account its kinematic nature. This definition differs significantly from that adopted by a number of mathematicians in recent works. If we use the definition accepted today, which does not take into account the kinematic background, then the classical result of A. B. Kempe about the possibility of drawing by parts of an arbitrary plane algebraic curve with hinges of suitably chosen plane hinge mechanisms cannot be considered sufficiently substantiated by Kempe himself. This has been noted in the modern literature, and even led to accusations of Kempe in error. The development and modern substantiation of Kempe's result proposed in the works is, in essence, a modification of Kempe's method for constructing the required mechanism from brick mechanisms performing algebraic actions. However, it is based on the use of a complex language of modern algebraic geometry, which leads to the replacement of Kemp's short and transparent reasoning by an order of magnitude longer and difficult to understand texts. In our definition of the hinge mechanism, we can give a rigorous formulation of Kempe's theorem, for the proof of which Kempe's arguments with minimal refinements are sufficient. This updated proof is provided in the paper. The paper discusses the modern development of Kempe's result, and the claims against Kempe's reasoning. It also gives general ideas about mathematics that the author has in connection with the Kempe theorem and its modern development.
Keywords: hinge mechanisms, drawing algebraic curves, Kempe's theorem, overripe mathematics. .
Mots-clés : configuration space
@article{SJIM_2022_25_3_a4,
     author = {M. D. Kovalev},
     title = {On the geometric definition of the hinge mechanism, {Kempe's} theorem and overripe mathematics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a4/}
}
TY  - JOUR
AU  - M. D. Kovalev
TI  - On the geometric definition of the hinge mechanism, Kempe's theorem and overripe mathematics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 41
EP  - 54
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a4/
LA  - ru
ID  - SJIM_2022_25_3_a4
ER  - 
%0 Journal Article
%A M. D. Kovalev
%T On the geometric definition of the hinge mechanism, Kempe's theorem and overripe mathematics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 41-54
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a4/
%G ru
%F SJIM_2022_25_3_a4
M. D. Kovalev. On the geometric definition of the hinge mechanism, Kempe's theorem and overripe mathematics. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 41-54. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a4/

[1] A. B. Kempe, “On a general method of describing plane curves of the $n^{th}$ degree by Linkwork”, Proc. London Math. Soc., 7:102 (1876), 213–216

[2] D. Gilbert, S. Kon-Fossen, Naglyadnaya geometriya, Nauka, M., 1981

[3] M. D. Kovalev, “Geometricheskaya teoriya sharnirnykh ustroistv”, Izv. RAN. Ser. matematicheskaya, 58:1 (1994), 45–70

[4] M. D. Kovalev, “Voprosy geometrii sharnirnykh ustroistv i skhem”, Vestn. MGTU. Ser. Mashinostroenie, 2001, no. 4, 33–51

[5] M. D. Kovalev, Geometricheskie voprosy kinematiki i statiki, Lenand, M., 2019

[6] M. Kapovich, J. J. Millson, “Universality theorems for configurations of planar linkages”, Topology, 41:6 (2002), 1051–1107

[7] C. King Henry, Planar linkages, algebraic sets, 1998, arXiv: math/9807023

[8] D. Jordan, M. Steiner, “Configuration spaces of mechanical linkages”, Discrete Comput. Geom., 22 (1999), 297–315

[9] E. Demain, J. O'Rourke, Geometric Folding Algorithms. Linkages, Origami, Polyhedra, Cambridge Univ. Press, N. Y., 2007

[10] A. A. Oshemkov, F. Yu. Popelenskii, A. A. Tuzhilin, A. T. Fomenko, A. I. Shafarevich, Kurs naglyadnoi geometrii i topologii, Lenand, M., 2015

[11] N. I. Levitskii, Teoriya mekhanizmov i mashin. Terminologiya, Nauka, M., 1984

[12] H. C. King, Semiconfiguration spaces of planar linkages, arXiv: math/9810130

[13] H. C. King, Configuration spaces of linkages in $\mathbb{R}^n$, 1998, arXiv: math/9811138

[14] J. Hopcroft, D. Joseph, S. Whitesides, “Movement problems for 2-dimensional linkages”, SIAM J. Comput., 13 (1984), 610–629

[15] T. Abbott, Generalizations of Kempe-s Universality Theorem, MS Thesis, Massachusetts Institute of Technology, Cambridge, 2008 http://web.mit.edu/tabbott/www/papers/mthesis.pdf

[16] S. Power, Elementary proofs of Kempe universality, arXiv: 1511.09002v2 [math.MG]

[17] M. D. Kovalev, Chto takoe sharnirnyi mekhanizm? I chto zhe dokazal Kempe?, Itogi nauki i tekhniki, 179, VINITI, M., 2020, 16–28

[18] Dzh. E. Litlvud, Matematicheskaya smes, Nauka, M., 1990