Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_3_a4, author = {M. D. Kovalev}, title = {On the geometric definition of the hinge mechanism, {Kempe's} theorem and overripe mathematics}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {41--54}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a4/} }
TY - JOUR AU - M. D. Kovalev TI - On the geometric definition of the hinge mechanism, Kempe's theorem and overripe mathematics JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 41 EP - 54 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a4/ LA - ru ID - SJIM_2022_25_3_a4 ER -
M. D. Kovalev. On the geometric definition of the hinge mechanism, Kempe's theorem and overripe mathematics. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 41-54. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a4/
[1] A. B. Kempe, “On a general method of describing plane curves of the $n^{th}$ degree by Linkwork”, Proc. London Math. Soc., 7:102 (1876), 213–216
[2] D. Gilbert, S. Kon-Fossen, Naglyadnaya geometriya, Nauka, M., 1981
[3] M. D. Kovalev, “Geometricheskaya teoriya sharnirnykh ustroistv”, Izv. RAN. Ser. matematicheskaya, 58:1 (1994), 45–70
[4] M. D. Kovalev, “Voprosy geometrii sharnirnykh ustroistv i skhem”, Vestn. MGTU. Ser. Mashinostroenie, 2001, no. 4, 33–51
[5] M. D. Kovalev, Geometricheskie voprosy kinematiki i statiki, Lenand, M., 2019
[6] M. Kapovich, J. J. Millson, “Universality theorems for configurations of planar linkages”, Topology, 41:6 (2002), 1051–1107
[7] C. King Henry, Planar linkages, algebraic sets, 1998, arXiv: math/9807023
[8] D. Jordan, M. Steiner, “Configuration spaces of mechanical linkages”, Discrete Comput. Geom., 22 (1999), 297–315
[9] E. Demain, J. O'Rourke, Geometric Folding Algorithms. Linkages, Origami, Polyhedra, Cambridge Univ. Press, N. Y., 2007
[10] A. A. Oshemkov, F. Yu. Popelenskii, A. A. Tuzhilin, A. T. Fomenko, A. I. Shafarevich, Kurs naglyadnoi geometrii i topologii, Lenand, M., 2015
[11] N. I. Levitskii, Teoriya mekhanizmov i mashin. Terminologiya, Nauka, M., 1984
[12] H. C. King, Semiconfiguration spaces of planar linkages, arXiv: math/9810130
[13] H. C. King, Configuration spaces of linkages in $\mathbb{R}^n$, 1998, arXiv: math/9811138
[14] J. Hopcroft, D. Joseph, S. Whitesides, “Movement problems for 2-dimensional linkages”, SIAM J. Comput., 13 (1984), 610–629
[15] T. Abbott, Generalizations of Kempe-s Universality Theorem, MS Thesis, Massachusetts Institute of Technology, Cambridge, 2008 http://web.mit.edu/tabbott/www/papers/mthesis.pdf
[16] S. Power, Elementary proofs of Kempe universality, arXiv: 1511.09002v2 [math.MG]
[17] M. D. Kovalev, Chto takoe sharnirnyi mekhanizm? I chto zhe dokazal Kempe?, Itogi nauki i tekhniki, 179, VINITI, M., 2020, 16–28
[18] Dzh. E. Litlvud, Matematicheskaya smes, Nauka, M., 1990