Homogenization of a periodic elastic structure saturated with a Maxwell fluid
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 170-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the dynamics of an elastic porous medium saturated with a Maxwell fluid is investigated. Maxwell fluid belongs to the class of viscoelastic fluids whose deformation rate tensor is proportional to the sum of the stress tensor and its time derivative. The porous medium is governed by the equations of linear elasticity. A homogenized model of the structure is derived by employing the two-scale convergence technique. The model describes a new material which possesses two kinds of memory. The first memory is inherited from the Maxwell fluid, the second one is standard for the homogenization of non-stationary problems.
Keywords: homogenization, two-scale convergence, elastic porous medium, Maxwell fluid. .
@article{SJIM_2022_25_3_a13,
     author = {V. N. Starovoitov and B. N. Starovoitova},
     title = {Homogenization of a periodic elastic structure saturated with a {Maxwell} fluid},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {170--188},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a13/}
}
TY  - JOUR
AU  - V. N. Starovoitov
AU  - B. N. Starovoitova
TI  - Homogenization of a periodic elastic structure saturated with a Maxwell fluid
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 170
EP  - 188
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a13/
LA  - ru
ID  - SJIM_2022_25_3_a13
ER  - 
%0 Journal Article
%A V. N. Starovoitov
%A B. N. Starovoitova
%T Homogenization of a periodic elastic structure saturated with a Maxwell fluid
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 170-188
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a13/
%G ru
%F SJIM_2022_25_3_a13
V. N. Starovoitov; B. N. Starovoitova. Homogenization of a periodic elastic structure saturated with a Maxwell fluid. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 170-188. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a13/

[1] T. Sochi, “Non-Newtonian flow in porous media”, Polymer, 51:22 (2010), 5007–5023 | DOI

[2] L. Khomami, B. Kardos, J. L. Skartsis, “Polymeric flow through fibrous media”, J. Rheology, 36:4 (1992), 589–620 | DOI

[3] A. F. Morais, H. Seybold, H. J. Herrmann, J. S. Andrade, “Non-Newtonian fluid flow through threedimensional disordered porous media”, Phys. Review Letters, 103:19 (2009), 194502 | DOI

[4] A. Bourgeat, A. Mikelic, “Homogenization of a polymer flow through a porous medium”, Nonlinear analysis, methods and applications, 27:7 (1996), 1221–1253

[5] C. B. Shah, Y. C. Yortsos, “Aspects of flow of power-law fluids in porous media”, AIChE J., 41:5 (1995), 1099–1112 | DOI

[6] B. Khuzhayorov, J. L. Auriault, P. Royer, “Derivation of macroscopic filtration law for transient linear viscoelastic fluid flow in porous media”, Internat. J. Engrg. Sci., 38 (2000), 487–504

[7] M. Lopez de Haro, J. A.P. del Rio, S. Whitaker, “Flow of Maxwell fluids in porous media”, Transport in Porous Media, 25:2 (1996), 167–192

[8] R. P. Gilbert, A. Panchenko, A. Vasilic, “Homogenizing the acoustics of cancellous bone with an interstitial non-Newtonian fluid”, Nonlinear Analysis: Theory, Methods and Applications, 74:4 (2011), 1005–1018 | DOI

[9] K. H. Hoffmann, N. D. Botkin, V. N. Starovoitov, “Homogenization of interfaces between rapidly oscillating fine elastic structures and fluids”, SIAM J. Appl. Math., 65:3 (2005), 983–1005

[10] S. A. Sazhenkov, E. V. Sazhenkova, “Homogenization of a submerged two-level bristle structure for modeling in biotechnology”, Sib. elektron. mat. izvestiya, 17 (2020), 1359–1450

[11] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Analysis, 20:3 (1989), 608–623

[12] G. Nguetseng, “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Analysis, 21:6 (1990), 1394–1414

[13] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Analysis, 23 (1992), 1482–1518

[14] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Internat. J. Pure Appl. Math., 2:1 (2002), 35–86

[15] V. V. Zhikov, “O dvukhmasshtabnoi skhodimosti”, Trudy sem. im. I. G. Petrovskogo, 23, 2003, 149–186

[16] G. A. Pavliotis, A. M. Stuart, Multiscale methods: Averaging and Homogenization, Springer-Verl, N.Y., 2008

[17] A. Holmbom, “Homogenization of parabolic equations: An alternative approach and some corrector-type results”, Appl. Math., 42:5 (1995), 321–43

[18] O. Gipouloux, A. M. Zine, “Computation of the filtration laws through porous media for a non-Newtonian fluid obeying the power law”, Comput. Geosciences, 1:2 (1997), 127–153 | DOI