Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_3_a13, author = {V. N. Starovoitov and B. N. Starovoitova}, title = {Homogenization of a periodic elastic structure saturated with a {Maxwell} fluid}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {170--188}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a13/} }
TY - JOUR AU - V. N. Starovoitov AU - B. N. Starovoitova TI - Homogenization of a periodic elastic structure saturated with a Maxwell fluid JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 170 EP - 188 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a13/ LA - ru ID - SJIM_2022_25_3_a13 ER -
%0 Journal Article %A V. N. Starovoitov %A B. N. Starovoitova %T Homogenization of a periodic elastic structure saturated with a Maxwell fluid %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 170-188 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a13/ %G ru %F SJIM_2022_25_3_a13
V. N. Starovoitov; B. N. Starovoitova. Homogenization of a periodic elastic structure saturated with a Maxwell fluid. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 170-188. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a13/
[1] T. Sochi, “Non-Newtonian flow in porous media”, Polymer, 51:22 (2010), 5007–5023 | DOI
[2] L. Khomami, B. Kardos, J. L. Skartsis, “Polymeric flow through fibrous media”, J. Rheology, 36:4 (1992), 589–620 | DOI
[3] A. F. Morais, H. Seybold, H. J. Herrmann, J. S. Andrade, “Non-Newtonian fluid flow through threedimensional disordered porous media”, Phys. Review Letters, 103:19 (2009), 194502 | DOI
[4] A. Bourgeat, A. Mikelic, “Homogenization of a polymer flow through a porous medium”, Nonlinear analysis, methods and applications, 27:7 (1996), 1221–1253
[5] C. B. Shah, Y. C. Yortsos, “Aspects of flow of power-law fluids in porous media”, AIChE J., 41:5 (1995), 1099–1112 | DOI
[6] B. Khuzhayorov, J. L. Auriault, P. Royer, “Derivation of macroscopic filtration law for transient linear viscoelastic fluid flow in porous media”, Internat. J. Engrg. Sci., 38 (2000), 487–504
[7] M. Lopez de Haro, J. A.P. del Rio, S. Whitaker, “Flow of Maxwell fluids in porous media”, Transport in Porous Media, 25:2 (1996), 167–192
[8] R. P. Gilbert, A. Panchenko, A. Vasilic, “Homogenizing the acoustics of cancellous bone with an interstitial non-Newtonian fluid”, Nonlinear Analysis: Theory, Methods and Applications, 74:4 (2011), 1005–1018 | DOI
[9] K. H. Hoffmann, N. D. Botkin, V. N. Starovoitov, “Homogenization of interfaces between rapidly oscillating fine elastic structures and fluids”, SIAM J. Appl. Math., 65:3 (2005), 983–1005
[10] S. A. Sazhenkov, E. V. Sazhenkova, “Homogenization of a submerged two-level bristle structure for modeling in biotechnology”, Sib. elektron. mat. izvestiya, 17 (2020), 1359–1450
[11] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Analysis, 20:3 (1989), 608–623
[12] G. Nguetseng, “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Analysis, 21:6 (1990), 1394–1414
[13] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Analysis, 23 (1992), 1482–1518
[14] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Internat. J. Pure Appl. Math., 2:1 (2002), 35–86
[15] V. V. Zhikov, “O dvukhmasshtabnoi skhodimosti”, Trudy sem. im. I. G. Petrovskogo, 23, 2003, 149–186
[16] G. A. Pavliotis, A. M. Stuart, Multiscale methods: Averaging and Homogenization, Springer-Verl, N.Y., 2008
[17] A. Holmbom, “Homogenization of parabolic equations: An alternative approach and some corrector-type results”, Appl. Math., 42:5 (1995), 321–43
[18] O. Gipouloux, A. M. Zine, “Computation of the filtration laws through porous media for a non-Newtonian fluid obeying the power law”, Comput. Geosciences, 1:2 (1997), 127–153 | DOI