Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_3_a12, author = {V. G. Romanov and T.V. Bugueva}, title = {The problem of determining the coefficient for a nonlinear term of a quasi-linear wave equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {154--169}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a12/} }
TY - JOUR AU - V. G. Romanov AU - T.V. Bugueva TI - The problem of determining the coefficient for a nonlinear term of a quasi-linear wave equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 154 EP - 169 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a12/ LA - ru ID - SJIM_2022_25_3_a12 ER -
%0 Journal Article %A V. G. Romanov %A T.V. Bugueva %T The problem of determining the coefficient for a nonlinear term of a quasi-linear wave equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 154-169 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a12/ %G ru %F SJIM_2022_25_3_a12
V. G. Romanov; T.V. Bugueva. The problem of determining the coefficient for a nonlinear term of a quasi-linear wave equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 154-169. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a12/
[1] Y. Kurylev, M. Lassas, G. Uhlmann, “Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations”, Invent. Math., 212 (2018), 781–857, arXiv: 1405.3386
[2] M. Lassas, G. Uhlmann, Y. Wang, “Inverse problems for semilinear wave equations on Lorentzian manifolds”, Comm. Math. Phys., 360 (2018), 555–609, arXiv: 1606.06261
[3] P. Hintz, G. Uhlmann, “Reconstruction of Lorentzian manifolds from boundary light observation sets”, Internat. Math. Res. Notices, 22 (2019), 6949–6987, arXiv: 1705.01215
[4] A. S. Barreto, “Interactions of semilinear progressing waves in two or more space dimensions”, Inverse Probl. Imaging., 14:6 (2020), 1057–1105, arXiv: 2001.11061
[5] A. S. Barreto, G. Uhlmann, Y. Wang, Inverse scattering for critical semilinear wave equations, arXiv: 2003.03822
[6] P. Hintz, G. Uhlmann, J. Zhai, “An inverse boundary value problem for a semilinear wave equation on Lorentzian manifolds”, Internat. Math. Res. Notices., 2021, arXiv: 2005.10447
[7] M. Lassas, T. Liimatainen, L. Potenciano-Machado, T. Tyni, Uniqueness and stability of an inverse problem for a semi-linear wave equation, arXiv: 2006.13193
[8] P. Stefanov, A. S. Barreto, Recovery of a cubic non-linearity in the wave equation in the weakly non-linear regime, arXiv: 2102.06323
[9] Y. M. Assylbekov, T. Zhou, “Direct and inverse problems for the nonlinear time-harmonic Maxwell equations in Kerr-type media”, J. Spectral Theory., 2017, arXiv: 1709.07767
[10] X. Chen, M. Lassas, L. Oksanen, G. P. Paternain, Detection of Hermitian connections in wave equations with cubic non-linearity, arXiv: 1902.05711
[11] M. de Hoop, G. Uhlmann, Y. Wang, “Nonlinear interaction of waves in elastodynamics and an inverse problem”, Math. Ann., 376:1-2 (2020), 765–795
[12] M. Lassas, “Inverse problems for linear and non-linear hyperbolic equations”, Proc. Internat. Congress Math., v. 3, 2018, 3739–3760
[13] Y. Wang, T. Zhou, “Inverse problems for quadratic derivative nonlinear wave equations”, Comm. PDE, 44:11 (2019), 1140–1158
[14] G. Uhlmann, J. Zhai, “Inverse problems for nonlinear hyperbolic equations”, Discrete Contin. Dynam. Sys. Ser. A, 41:1 (2021), 455–469
[15] G. Uhlmann, J. Zhai, “On an inverse boundary value problem for a nonlinear elastic wave equation”, J. Math. Pures Appl., 153 (2021), 114–136
[16] A. S. Barreto, P. Stefanov, Recovery of a general nonlinearity in the semilinear wave equation, arXiv: 2107.08513v1
[17] V. G. Romanov, T. V. Bugueva, “Obratnaya zadacha dlya nelineinogo volnovogo uravneniya”, Sib. zhurn. industr. matematiki, 25:2 (2022), 83–100
[18] V. G. Romanov, “Obratnye zadachi bez fazovoi informatsii, ispolzuyuschie interferentsiyu voln”, Sib. mat. zhurn., 59:3 (2018), 626–638
[19] V. A. Dedok, A. L. Karchevskii, V. G. Romanov, “Chislennyi metod opredeleniya dielektricheskoi pronitsaemosti po modulyu vektora elektricheskoi napryazhennosti elektromagnitnogo polya”, Sib. zhurn. industr. matematiki, 22:3 (2019), 48–58
[20] V. G. Romanov, “Obratnaya zadacha elektrodinamiki dlya anizotropnoi sredy. Lineinoe priblizhenie”, Zhurn. vychisl. matematiki i mat. fiziki, 60:6 (2020), 134–141
[21] V. G. Romanov, “Zadacha ob opredelenii anizotropnoi provodimosti v uravneniyakh elektrodinamiki”, Dokl. RAN, 496:1 (2021), 53–55
[22] V. G. Romanov, “Besfazovaya zadacha ob opredelenii anizotropnoi provodimosti v uravneniyakh elektrodinamiki”, Dokl. RAN, 501:6 (2021), 79–83
[23] F. Natterer, The Mathematics of Computerized Tomography, Wiley Sons, N.Y., 1986
[24] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961