The problem of determining the coefficient for a nonlinear term of a quasi-linear wave equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 154-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonlinear differential equation, the main part of which is the wave operator, we consider the inverse problem of determining the coefficient of the nonlinear term of the equation. It is assumed that the desired coefficient is a continuous and finite function in $\mathbb{R}^3$. For the original equation, plane waves are considered that are fall on the inhomogeneity at different angles. In the inverse problem, it is assumed that the solutions corresponding to these waves can be measured at the points at the boundary of a certain ball containing the inhomogeneity, at times close to the arrival of the wave front at these points, and for a certain range of angles of incidence of plane. It is shown that the solutions of the corresponding direct problems for the differential equation are bounded in some neighborhood of the wave front, and an asymptotic expansion of the solution in this neighborhood is found. On the basis of this expansion, it was established that the information specified in the inverse problem allows us to reduce the problem of finding the desired function to the problem of X-ray tomography with incomplete data. A theorem on the uniqueness of the solution of the inverse problem is formulated and proved. It is shown that, in an algorithmic sense, this problem is reduced to the well-known problem of moments.
Keywords: nonlinear wave equation, inverse problem, tomography. .
@article{SJIM_2022_25_3_a12,
     author = {V. G. Romanov and T.V. Bugueva},
     title = {The problem of determining the coefficient for a nonlinear term of a quasi-linear wave equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {154--169},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a12/}
}
TY  - JOUR
AU  - V. G. Romanov
AU  - T.V. Bugueva
TI  - The problem of determining the coefficient for a nonlinear term of a quasi-linear wave equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 154
EP  - 169
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a12/
LA  - ru
ID  - SJIM_2022_25_3_a12
ER  - 
%0 Journal Article
%A V. G. Romanov
%A T.V. Bugueva
%T The problem of determining the coefficient for a nonlinear term of a quasi-linear wave equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 154-169
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a12/
%G ru
%F SJIM_2022_25_3_a12
V. G. Romanov; T.V. Bugueva. The problem of determining the coefficient for a nonlinear term of a quasi-linear wave equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 154-169. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a12/

[1] Y. Kurylev, M. Lassas, G. Uhlmann, “Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations”, Invent. Math., 212 (2018), 781–857, arXiv: 1405.3386

[2] M. Lassas, G. Uhlmann, Y. Wang, “Inverse problems for semilinear wave equations on Lorentzian manifolds”, Comm. Math. Phys., 360 (2018), 555–609, arXiv: 1606.06261

[3] P. Hintz, G. Uhlmann, “Reconstruction of Lorentzian manifolds from boundary light observation sets”, Internat. Math. Res. Notices, 22 (2019), 6949–6987, arXiv: 1705.01215

[4] A. S. Barreto, “Interactions of semilinear progressing waves in two or more space dimensions”, Inverse Probl. Imaging., 14:6 (2020), 1057–1105, arXiv: 2001.11061

[5] A. S. Barreto, G. Uhlmann, Y. Wang, Inverse scattering for critical semilinear wave equations, arXiv: 2003.03822

[6] P. Hintz, G. Uhlmann, J. Zhai, “An inverse boundary value problem for a semilinear wave equation on Lorentzian manifolds”, Internat. Math. Res. Notices., 2021, arXiv: 2005.10447

[7] M. Lassas, T. Liimatainen, L. Potenciano-Machado, T. Tyni, Uniqueness and stability of an inverse problem for a semi-linear wave equation, arXiv: 2006.13193

[8] P. Stefanov, A. S. Barreto, Recovery of a cubic non-linearity in the wave equation in the weakly non-linear regime, arXiv: 2102.06323

[9] Y. M. Assylbekov, T. Zhou, “Direct and inverse problems for the nonlinear time-harmonic Maxwell equations in Kerr-type media”, J. Spectral Theory., 2017, arXiv: 1709.07767

[10] X. Chen, M. Lassas, L. Oksanen, G. P. Paternain, Detection of Hermitian connections in wave equations with cubic non-linearity, arXiv: 1902.05711

[11] M. de Hoop, G. Uhlmann, Y. Wang, “Nonlinear interaction of waves in elastodynamics and an inverse problem”, Math. Ann., 376:1-2 (2020), 765–795

[12] M. Lassas, “Inverse problems for linear and non-linear hyperbolic equations”, Proc. Internat. Congress Math., v. 3, 2018, 3739–3760

[13] Y. Wang, T. Zhou, “Inverse problems for quadratic derivative nonlinear wave equations”, Comm. PDE, 44:11 (2019), 1140–1158

[14] G. Uhlmann, J. Zhai, “Inverse problems for nonlinear hyperbolic equations”, Discrete Contin. Dynam. Sys. Ser. A, 41:1 (2021), 455–469

[15] G. Uhlmann, J. Zhai, “On an inverse boundary value problem for a nonlinear elastic wave equation”, J. Math. Pures Appl., 153 (2021), 114–136

[16] A. S. Barreto, P. Stefanov, Recovery of a general nonlinearity in the semilinear wave equation, arXiv: 2107.08513v1

[17] V. G. Romanov, T. V. Bugueva, “Obratnaya zadacha dlya nelineinogo volnovogo uravneniya”, Sib. zhurn. industr. matematiki, 25:2 (2022), 83–100

[18] V. G. Romanov, “Obratnye zadachi bez fazovoi informatsii, ispolzuyuschie interferentsiyu voln”, Sib. mat. zhurn., 59:3 (2018), 626–638

[19] V. A. Dedok, A. L. Karchevskii, V. G. Romanov, “Chislennyi metod opredeleniya dielektricheskoi pronitsaemosti po modulyu vektora elektricheskoi napryazhennosti elektromagnitnogo polya”, Sib. zhurn. industr. matematiki, 22:3 (2019), 48–58

[20] V. G. Romanov, “Obratnaya zadacha elektrodinamiki dlya anizotropnoi sredy. Lineinoe priblizhenie”, Zhurn. vychisl. matematiki i mat. fiziki, 60:6 (2020), 134–141

[21] V. G. Romanov, “Zadacha ob opredelenii anizotropnoi provodimosti v uravneniyakh elektrodinamiki”, Dokl. RAN, 496:1 (2021), 53–55

[22] V. G. Romanov, “Besfazovaya zadacha ob opredelenii anizotropnoi provodimosti v uravneniyakh elektrodinamiki”, Dokl. RAN, 501:6 (2021), 79–83

[23] F. Natterer, The Mathematics of Computerized Tomography, Wiley Sons, N.Y., 1986

[24] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961