Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_3_a11, author = {N. V. Pertsev and V. A. Topchii and K. K. Loginov}, title = {Numerical stochastic modeling of dynamics of interacting populations}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {135--153}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a11/} }
TY - JOUR AU - N. V. Pertsev AU - V. A. Topchii AU - K. K. Loginov TI - Numerical stochastic modeling of dynamics of interacting populations JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 135 EP - 153 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a11/ LA - ru ID - SJIM_2022_25_3_a11 ER -
%0 Journal Article %A N. V. Pertsev %A V. A. Topchii %A K. K. Loginov %T Numerical stochastic modeling of dynamics of interacting populations %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 135-153 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a11/ %G ru %F SJIM_2022_25_3_a11
N. V. Pertsev; V. A. Topchii; K. K. Loginov. Numerical stochastic modeling of dynamics of interacting populations. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 135-153. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a11/
[1] M. S. Bartlett, Vvedenie v teoriyu sluchainykh protsessov, Izd-vo inostr. lit., M., 1958
[2] A. T. Barucha-Rid, Elementy teorii markovskikh sluchainykh protsessov i ikh prilozheniya, Nauka, M., 1969
[3] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971
[4] P. Jagers, Branching Processes with Biological Applications, Wiley and Sons, London, 1975
[5] R. Nisbet, W. Garney, Modelling Fluctuating Populations, Wiley and Sons, London, 1982
[6] N. V. Pertsev, Veroyatnostnaya model infektsionnogo zabolevaniya, Preprint VTs SO AN SSSR, No 107, Novosibirsk, 1984
[7] G. I. Marchuk, Matematicheskie modeli v immunologii, Nauka, M., 1985
[8] N. V. Pertsev, B. Yu. Pichugin, “Primenenie metoda Monte-Karlo dlya modelirovaniya dinamiki soobschestv vzaimodeistvuyuschikh individuumov”, Vestn. Voronezh. gos. tekhn. un-ta, 2:5 (2006), 70–76
[9] A. D. Barbour, M. J. Luczak, “Individual and patch behaviour in structured metapopulation models”, J. Math. Biol., 71:3 (2015), 713–733
[10] O. Hyrien, S. A. Peslak, N. Yanev, J. Palis, “Stochastic modeling of stress erythropoiesis using a two-type age-dependent branching process with immigration”, J. Math. Biol., 70:7 (2015), 1485–1521
[11] T. Chou, C. D. Greenman, “A hierarchical kinetic theory of birth, death and fission in age-structured interacting populations”, J. Stat. Phys., 164:1 (2016), 49–76
[12] B. J. Pichugin, N. V. Pertsev, V. A. Topchii, K. K. Loginov, “Stochastic modeling of age-structed population with time and size dependence of immigration rate”, Russ. J. Numer. Anal. Math. Modelling, 33:5 (2018), 289–299
[13] K. K. Loginov, N. V. Pertsev, V. A. Topchii, “Stokhasticheskoe modelirovanie kompartmentnykh sistem s trubkami”, Mat. biologiya i bioinformatika, 14:1 (2019), 188–203
[14] N. V. Pertsev, B. Yu. Pichugin, K. K. Loginov, “Stokhasticheskii analog modeli dinamiki VICh-1 infektsii, opisyvaemoi differentsialnymi uravneniyami s zapazdyvaniem”, Sib. zhurn. industr. matematiki, 22:1 (2019), 74–89
[15] N. V. Pertsev, K. K. Loginov, V. A. Topchii, “Analiz stadiya-zavisimoi modeli epidemii, postroennoi na osnove nemarkovskogo sluchainogo protsessa”, Sib. zhurn. industr. matematiki, 23:3 (2020), 105–122
[16] K. K. Loginov, N. V. Pertsev, “Pryamoe statisticheskoe modelirovanie rasprostraneniya epidemii na osnove stadiya-zavisimoi stokhasticheskoi modeli”, Mat. biologiya i bioinformatika, 16:2 (2021), 169–200
[17] G. A. Bocharov, K. K. Loginov, N. V. Pertsev, V. A. Topchii, “Pryamoe statisticheskoe modelirovanie dinamiki VICh-1 infektsii na osnove nemarkovskoi stokhasticheskoi modeli”, Zhurn. vychisl. matematiki i mat. fiziki, 61:8 (2021), 1245–1268
[18] M. A. Marchenko, G. A. Mikhailov, “Parallel realization of statistical simulation and random number generators”, Russ. J. Numer. Anal. Math. Modelling, 17 (2002), 113–124
[19] M. Marchenko, “PARMONC a software library for massively parallel stochastic simulation”, Parallel Computing Technologies, Lecture Notes in Computer Science, 6873, Springer-Verl., Berlin–Heidelberg, 2011, 302–316
[20] G. A. Mikhailov, A. V. Voitishek, Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Akademiya, M., 2006
[21] G. A. Mikhailov, “Zamechaniya o prakticheski effektivnykh algoritmakh chislennogo statisticheskogo modelirovaniya”, Sib. zhurn. vychisl. matematiki, 17:2 (2014), 177–190
[22] G. Kramer, Matematicheskie metody statistiki, Mir, M., 1975