Mathematical modeling for thin-layered elastic media in seismic exploration
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 120-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some issues of mathematical modeling of wave fields associated with thin-layered objects of a horizontally-layered medium are considered. When describing the processes of wave propagation, systems of differential equations in partial derivatives are used, which correspond to the theory of elasticity. As a result, both vertical and horizontal displacement components are obtained, which is important for setting up and analyzing seismic field work with three-component instruments. In addition, in the mathematical formulation of the problem, a buried source of the expansion center type is used, which brings the model results closer to the real experiment. The solution of the problem written in the spectral form is analyzed, which may turn out to be significant when it is used to solve inverse dynamic seismic problems. The paper presents not only the computational features of the proposed scheme for solving the problem, but also the study of the resulting wave fields from the point of view of their use in the processing and interpretation of real seismic data.
Keywords: system of elasticity equations, vertical displacement, horizontal displacement, horizontally layered isotropic medium, time frequency, spatial frequency. .
@article{SJIM_2022_25_3_a10,
     author = {G. M. Mitrofanov and A. L. Karchevsky},
     title = {Mathematical modeling for thin-layered elastic media in seismic exploration},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {120--134},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a10/}
}
TY  - JOUR
AU  - G. M. Mitrofanov
AU  - A. L. Karchevsky
TI  - Mathematical modeling for thin-layered elastic media in seismic exploration
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 120
EP  - 134
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a10/
LA  - ru
ID  - SJIM_2022_25_3_a10
ER  - 
%0 Journal Article
%A G. M. Mitrofanov
%A A. L. Karchevsky
%T Mathematical modeling for thin-layered elastic media in seismic exploration
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 120-134
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a10/
%G ru
%F SJIM_2022_25_3_a10
G. M. Mitrofanov; A. L. Karchevsky. Mathematical modeling for thin-layered elastic media in seismic exploration. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 120-134. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a10/

[1] G. N. Gogonenkov, Izuchenie detalnogo stroeniya osadochnykh tolsch seismorazvedkoi, Nedra, M., 1987

[2] O. Yilmaz, Seismic data analysis: processing, inversion and interpretation of seismic data, v. 1, 2, Society of Exploration Geophysicists, Tulsa, 2001

[3] R. R. Stewart, J. E. Gaiser, R. J. Brown, D. C. Lawton, “Tutorial converted-wave seismic exploration: Methods”, Geophysics, 67:5 (2002), 1348–1363

[4] G. I. Petroshen, “Osnovy matematicheskoi teorii rasprostraneniya uprugikh voln”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, 18, Nauka, L., 1978, 1–246

[5] G. I. Petroshen, L. A. Molotkov, P. V. Krauklis, Volny v sloisto-odnorodnykh izotropnykh sredakh, Nauka, L., 1982

[6] N. A. Haskell, “Radiation pattern of surface waves from point sources in a multi-layered medium”, Bull. Seismological Soc. America, 54:1 (1964), 377–393

[7] N. A. Haskell, “Crustal reflection of plane P and SV waves”, J. Geophys. Research, 67:12 (1962), 4751–4768

[8] J. A. Hudson, “A quantitative evaluation of seismic signals at teleseismic distances-I radiation from point sources”, Geophys. J. Internat., 18:3 (1969), 233–249

[9] W. T. Thomson, “Transmission of elastic waves through a stratified solid medium”, J. Appl. Phys., 21:2 (1950), 89–93

[10] L. Knopoff, “A matrix method for elastic wave problems”, Bull. Seismological Soc. America, 54:1 (1964), 431–438

[11] A. G. Fatyanov, B. G. Mikhailenko, “Metod rascheta nestatsionarnykh volnovykh polei v neuprugikh sloisto-neodnorodnykh sredakh”, Dokl. AN SSSR, 301:4 (1988), 834–839

[12] A. G. Fatyanov, “Poluanaliticheskii metod resheniya pryamykh dinamicheskikh zadach v sloistykh sredakh”, Dokl. AN SSSR, 310:2 (1990), 323–327

[13] V. I. Dmitriev, “Obschii metod rascheta elektromagnitnogo polya v sloistoi srede”, Vychislitelnye metody i programmirovanie, 10, Izd-vo MGU, M., 1968, 55–65

[14] G. V. Akkuratov, V. I. Dmitriev, “Metod rascheta polya ustanovivshikhsya uprugikh kolebanii v sloistoi srede”, Zhurn. vychisl. matematiki i mat. fiziki, 24:2 (1984), 272–286

[15] V. M. Pavlov, “A convenient technique for calculating synthetic seismograms in layered half-space”, Proc. Intern. Conf. «Problems of Geocosmos» (St. Peterburg, 2002), 320–323

[16] A. L. Karchevskii, “Pryamaya dinamicheskaya zadacha seismiki dlya gorizontalno-sloistykh sred”, Sib. elektron. mat. izv., 2 (2005), 23–61 http://semr.math.nsc.ru/v2/p23-61.pdf

[17] A. L. Karchevskii, “Metod chislennogo resheniya sistemy uprugosti dlya gorizontalno sloistoi anizotropnoi sredy”, Geologiya i geofizika, 46:3 (2005), 339–351

[18] A. L. Karchevskii, “Chislennoe reshenie odnomernoi obratnoi zadachi dlya sistemy uprugosti”, Dokl. AN, 375:2 (2000), 235–238

[19] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matematiki, 4:3 (2001), 259–269

[20] E. Kurpinar, A. L. Karchevsky, “Numerical solution of the inverse problem for the elasticity system for horizontally stratified media”, Inverse Problems, 20:3 (2004), 953–976

[21] A. L. Karchevsky, “Numerical reconstruction of medium parameters of member of thin anisotropic layers”, J. Inverse Ill-Posed Probl., 12:5 (2004), 519–634

[22] E. Kurpinar, A. L. Karchevsky, “Finding of the elastic parameters of a horizontal (thinly stratified) anisotropic layer”, Appl. Anal., 87:10-11 (2008), 1179–1212

[23] A. Ban-Menahem, S. J. Singh, Seismic Waves and Sources, Springer-Verl, N.Y., 1981

[24] V. Novatskii, Teoriya uprugosti, Mir, M., 1975

[25] B. P. Demidovich, I. A. Maron, Osnovy vychislitelnoi matematiki, Nauka, M., 1970

[26] G. M. Mitrofanov, “Ispolzovanie sglazhivayuschikh okon pri spektralnom analize seismicheskikh trass”, Geologiya i geofizika, 1979, no. 1, 110–123

[27] G. M. Mitrofanov, “Obrabotka fazovykh spektrov mnogokanalnykh seismogramm”, Geologiya i geofizika, 1986, no. 10, 99–109

[28] V. I. Krylov, Priblizhennoe vychislenie integralov, Nauka, M., 1967

[29] A. S. Alekseev, V. M. Babich, B. Ya. Gelchinskii, “Luchevoi metod vychisleniya intensivnosti volnovykh frontov”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, 5, Nauka, L., 1961, 3–24