Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_3_a10, author = {G. M. Mitrofanov and A. L. Karchevsky}, title = {Mathematical modeling for thin-layered elastic media in seismic exploration}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {120--134}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a10/} }
TY - JOUR AU - G. M. Mitrofanov AU - A. L. Karchevsky TI - Mathematical modeling for thin-layered elastic media in seismic exploration JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 120 EP - 134 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a10/ LA - ru ID - SJIM_2022_25_3_a10 ER -
%0 Journal Article %A G. M. Mitrofanov %A A. L. Karchevsky %T Mathematical modeling for thin-layered elastic media in seismic exploration %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 120-134 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a10/ %G ru %F SJIM_2022_25_3_a10
G. M. Mitrofanov; A. L. Karchevsky. Mathematical modeling for thin-layered elastic media in seismic exploration. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 120-134. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a10/
[1] G. N. Gogonenkov, Izuchenie detalnogo stroeniya osadochnykh tolsch seismorazvedkoi, Nedra, M., 1987
[2] O. Yilmaz, Seismic data analysis: processing, inversion and interpretation of seismic data, v. 1, 2, Society of Exploration Geophysicists, Tulsa, 2001
[3] R. R. Stewart, J. E. Gaiser, R. J. Brown, D. C. Lawton, “Tutorial converted-wave seismic exploration: Methods”, Geophysics, 67:5 (2002), 1348–1363
[4] G. I. Petroshen, “Osnovy matematicheskoi teorii rasprostraneniya uprugikh voln”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, 18, Nauka, L., 1978, 1–246
[5] G. I. Petroshen, L. A. Molotkov, P. V. Krauklis, Volny v sloisto-odnorodnykh izotropnykh sredakh, Nauka, L., 1982
[6] N. A. Haskell, “Radiation pattern of surface waves from point sources in a multi-layered medium”, Bull. Seismological Soc. America, 54:1 (1964), 377–393
[7] N. A. Haskell, “Crustal reflection of plane P and SV waves”, J. Geophys. Research, 67:12 (1962), 4751–4768
[8] J. A. Hudson, “A quantitative evaluation of seismic signals at teleseismic distances-I radiation from point sources”, Geophys. J. Internat., 18:3 (1969), 233–249
[9] W. T. Thomson, “Transmission of elastic waves through a stratified solid medium”, J. Appl. Phys., 21:2 (1950), 89–93
[10] L. Knopoff, “A matrix method for elastic wave problems”, Bull. Seismological Soc. America, 54:1 (1964), 431–438
[11] A. G. Fatyanov, B. G. Mikhailenko, “Metod rascheta nestatsionarnykh volnovykh polei v neuprugikh sloisto-neodnorodnykh sredakh”, Dokl. AN SSSR, 301:4 (1988), 834–839
[12] A. G. Fatyanov, “Poluanaliticheskii metod resheniya pryamykh dinamicheskikh zadach v sloistykh sredakh”, Dokl. AN SSSR, 310:2 (1990), 323–327
[13] V. I. Dmitriev, “Obschii metod rascheta elektromagnitnogo polya v sloistoi srede”, Vychislitelnye metody i programmirovanie, 10, Izd-vo MGU, M., 1968, 55–65
[14] G. V. Akkuratov, V. I. Dmitriev, “Metod rascheta polya ustanovivshikhsya uprugikh kolebanii v sloistoi srede”, Zhurn. vychisl. matematiki i mat. fiziki, 24:2 (1984), 272–286
[15] V. M. Pavlov, “A convenient technique for calculating synthetic seismograms in layered half-space”, Proc. Intern. Conf. «Problems of Geocosmos» (St. Peterburg, 2002), 320–323
[16] A. L. Karchevskii, “Pryamaya dinamicheskaya zadacha seismiki dlya gorizontalno-sloistykh sred”, Sib. elektron. mat. izv., 2 (2005), 23–61 http://semr.math.nsc.ru/v2/p23-61.pdf
[17] A. L. Karchevskii, “Metod chislennogo resheniya sistemy uprugosti dlya gorizontalno sloistoi anizotropnoi sredy”, Geologiya i geofizika, 46:3 (2005), 339–351
[18] A. L. Karchevskii, “Chislennoe reshenie odnomernoi obratnoi zadachi dlya sistemy uprugosti”, Dokl. AN, 375:2 (2000), 235–238
[19] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matematiki, 4:3 (2001), 259–269
[20] E. Kurpinar, A. L. Karchevsky, “Numerical solution of the inverse problem for the elasticity system for horizontally stratified media”, Inverse Problems, 20:3 (2004), 953–976
[21] A. L. Karchevsky, “Numerical reconstruction of medium parameters of member of thin anisotropic layers”, J. Inverse Ill-Posed Probl., 12:5 (2004), 519–634
[22] E. Kurpinar, A. L. Karchevsky, “Finding of the elastic parameters of a horizontal (thinly stratified) anisotropic layer”, Appl. Anal., 87:10-11 (2008), 1179–1212
[23] A. Ban-Menahem, S. J. Singh, Seismic Waves and Sources, Springer-Verl, N.Y., 1981
[24] V. Novatskii, Teoriya uprugosti, Mir, M., 1975
[25] B. P. Demidovich, I. A. Maron, Osnovy vychislitelnoi matematiki, Nauka, M., 1970
[26] G. M. Mitrofanov, “Ispolzovanie sglazhivayuschikh okon pri spektralnom analize seismicheskikh trass”, Geologiya i geofizika, 1979, no. 1, 110–123
[27] G. M. Mitrofanov, “Obrabotka fazovykh spektrov mnogokanalnykh seismogramm”, Geologiya i geofizika, 1986, no. 10, 99–109
[28] V. I. Krylov, Priblizhennoe vychislenie integralov, Nauka, M., 1967
[29] A. S. Alekseev, V. M. Babich, B. Ya. Gelchinskii, “Luchevoi metod vychisleniya intensivnosti volnovykh frontov”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, 5, Nauka, L., 1961, 3–24