Polynomial classification algorithm of the Thomson problem solutions
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 110-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the question of determining the equivalence of solutions of the Thomson problem using their geometric structure. The algorithm for classifying solutions with polynomial complexity was developed. The results of numerical experiments are presented.
Keywords: Thomson problem, weighted graphs isomorphism. .
Mots-clés : equilibrium configurations
@article{SJIM_2022_25_2_a7,
     author = {S. A. Fadeev and V. A. Dedok and A. N. Bondarenko},
     title = {Polynomial classification algorithm of the {Thomson} problem solutions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {110--126},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a7/}
}
TY  - JOUR
AU  - S. A. Fadeev
AU  - V. A. Dedok
AU  - A. N. Bondarenko
TI  - Polynomial classification algorithm of the Thomson problem solutions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 110
EP  - 126
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a7/
LA  - ru
ID  - SJIM_2022_25_2_a7
ER  - 
%0 Journal Article
%A S. A. Fadeev
%A V. A. Dedok
%A A. N. Bondarenko
%T Polynomial classification algorithm of the Thomson problem solutions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 110-126
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a7/
%G ru
%F SJIM_2022_25_2_a7
S. A. Fadeev; V. A. Dedok; A. N. Bondarenko. Polynomial classification algorithm of the Thomson problem solutions. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 110-126. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a7/

[1] A. N. Bondarenko, M. N. Karchevskiy, L. A. Kozinkin, “The structure of metastable states in the Thomson problem”, J. Phys. Conf. Ser., 643 (2015) | DOI

[2] M. Robinson, I. Suarez-Martinez, N. A. Marks, “Generalized method for constructing the atomic coordinates of nanotube caps”, Phys. Rev. B, 87 (2013), 155430 | DOI

[3] S. Smale, “Mathematical problems for the next century”, Math. Intelligencer, 20:2 (1998), 7–15 | DOI | MR | Zbl

[4] J. J. Thomson, “On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle: with application of the results to the theory of atomic structure”, Philos. Mag. Ser. 6, 1904, 237–265 | DOI | Zbl

[5] E. P. Wigner, “On the interaction of electrons in metals”, Phys. Rev. B, 46 (1934), 1002 | DOI

[6] J. M. Voogd, P. M. A. Sloot, R. van Dantzig, “Crystallization on a sphere”, Future Gener. Comput. Syst., 10 (1994), 359–361 | DOI

[7] R. Bauer, “Distribution of points on a sphere with application to Star Catalogs”, J. Guid. Control Dyn., 23:1 (2000), 130–137 | DOI

[8] C. King III, W. R. Brown, M. J. Geller, S. J. Kenyon, “Identifying star streams in the Milky Way Halo”, Astrophys. J., 750:1 (2012) | DOI

[9] A. Băutu, E. Băutu, “Energy minimization of point charges on a sphere with particle swarms”, Romanian J. Phys., 54:1 (2009), 29–36

[10] D. L.D. Caspar, A. Klug, “Physical principles in the construction of regular viruses”, Cold Spring Harb. Symp. Quant. Biol., 27 (1962), 1–24 | DOI

[11] T. Erber, G. M. Hockney, “Equilibrium configurations of $N$ equals charges on a sphere”, J. Phys. A: Math. Gen., 24:23 (1991) | DOI

[12] E. Altschuler, T. Williams, E. Ratner, R. Tipton, R. Stong, F. Dowla, F. Wooten, “Possible global minimum lattice configurations for Thomson's problem of charges on a sphere”, Phys. Rev. Lett., 78 (1997) | DOI

[13] A. N. Bondarenko, T. V. Bugueva, L. A. Kozinkin, “Numerical study of the structure of metastable configurations for the Thomson problem”, Russ. Phys. J., 59 (2016), 121–129 | DOI

[14] R. E. Schwarz, “The 5-electron case of Thomson's problem”, Experiment Math., 22 (2013), 157–186 | DOI | MR

[15] L. Foppl, “Stabile anordnungen von elektronen im atom”, J. Reine Angew. Math., 141 (1912), 251–301 | MR

[16] V. A. Yudin, “The minimum of potential energy of a system of point charges”, Discrete Math. Appl., 3:1 (1993), 75–82 | DOI | MR

[17] N. N. Andreev, “An extremal property of the icosahedron”, East J. Approx., 2 (1996), 459–462 | MR | Zbl

[18] R. Fletcher, Practical Methods of Optimization, John Wiley Sons, N.Y., 1987 | MR

[19] X. Y. Jiang, H. Bunke, “Including geometry in graph representations: A quadratic-time graph isomorphism algorithm and its applications”, Adv. Structural and Syntactical Pattern Recognition, 1996, 110–119 | DOI