Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_2_a5, author = {V. G. Romanov and T. V. Bugueva}, title = {An inverse problem for a nonlinear wave equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {83--100}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a5/} }
V. G. Romanov; T. V. Bugueva. An inverse problem for a nonlinear wave equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 83-100. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a5/
[1] M. M. Lavrentev, V. G. Romanov, “O trekh linearizovannykh obratnykh zadachakh dlya giperbolicheskikh uravnenii”, Dokl. AN SSSR, 171:6 (1966), 1279–1281 | MR
[2] M. M. Lavrentev, V. G. Romanov, V. G. Vasilev, Mnogomernye obratnye zadachi dlya differentsialnykh uravnenii, Nauka, Novosibirsk, 1969 | MR
[3] V. G. Romanov, Nekotorye obratnye zadachi dlya uravnenii giperbolicheskogo tipa, Nauka, Novosibirsk, 1972 | MR
[4] V. G. Romanov, Obratnye zadachi dlya differentsialnykh uravnenii, izd. Novosib. gos. un-ta, Novosibirsk, 1973 | MR
[5] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki, Nauka, M., 1980 | MR
[6] V. G. Romanov, “O vosstanovlenii funktsii cherez integraly po semeistvu krivykh”, Sib. mat. zhurn., 8:5 (1967), 1206–1208 | Zbl
[7] V. G. Romanov, “O vosstanovlenii funktsii cherez integraly po ellipsoidam vrascheniya, u kotorykh odin fokus nepodvizhen”, Dokl. AN SSSR, 173:5 (1967), 766–769 | Zbl
[8] R. G. Mukhometov, “Zadacha vosstanovleniya dvumernoi metriki i integralnaya geometriya”, Dokl. AN SSSR, 232:1 (1977), 32–35 | MR | Zbl
[9] V. G. Romanov, “Integralnaya geometriya na geodezicheskikh izotropnoi rimanovoi metriki”, Dokl. AN SSSR, 241:2 (1978), 290–293 | MR | Zbl
[10] R. G. Mukhometov, V. G. Romanov, “K zadache vosstanovleniya izotropnoi rimanovoi metriki v $n$-mernom prostranstve”, Dokl. AN SSSR, 243:1 (1978), 41–44 | MR | Zbl
[11] I. N. Bernshtein, M. L. Gerver, “O zadache integralnoi geometrii dlya semeistva geodezicheskikh i obratnoi kinematicheskoi zadachi seismiki”, Dokl. AN SSSR, 243:2 (1978), 302–305 | MR
[12] V. G. Romanov, Ustoichivost v obratnykh zadachakh, Nauchnyi mir, M., 2005 | MR
[13] M. V. Klibanov, V. G. Romanov, “Explicit formula for the solution of the phaseless inverse scattering problem of imaging of nano structures”, J. Inverse Ill-Posed Probl., 23:2 (2015), 187–193 | DOI | MR | Zbl
[14] M. V. Klibanov, V. G. Romanov, “Explicit solution of 3-D phaseless inverse scattering problems for the Schrodinger equation: the plane wave case”, Eurasian J. Math. Comput. Appl., 3:1 (2015), 48–63 | MR
[15] M. V. Klibanov, V. G. Romanov, “The first solution of a long standing problem: Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrodinger equation”, J. Inverse Ill-Posed Probl., 23:4 (2015), 415–428 | DOI | MR | Zbl
[16] V. G. Romanov, “Some geometric aspects in inverse problems”, Eurasian J. Math. Comput. Appl., 3:4 (2015), 68–84
[17] M. V. Klibanov, V. G. Romanov, “Two reconstruction procedures for a 3D phaseless inverse scattering problem for the generalized Helmholtz equation”, Inverse Problems, 32:2 (2016), 015005 | DOI | MR | Zbl
[18] M. V. Klibanov, V. G. Romanov, “Reconstruction procedures for two inverse scattering problem without the phase information”, SIAM J. Appl. Math., 76:1 (2015), 178–196 | DOI | MR
[19] M. V. Klibanov, V. G. Romanov, “Uniqueness of a 3-D coefficient inverse scattering problem without the phase information”, Inverse Problems, 2017, 095007 | DOI | MR | Zbl
[20] V. G. Romanov, M. Yamamoto, “Phaseless inverse problems with interference waves”, J. Inverse Ill-Posed Probl., 26:5 (2018), 681–688 | DOI | MR | Zbl
[21] V. G. Romanov, “A problem of recovering a special two-dimension potential in a hyperbolic equation”, Eurasian J. Math. Comput. Appl., 4:1 (2016), 32–46
[22] V. G. Romanov, “Obratnye zadachi bez fazovoi informatsii, ispolzuyuschie interferentsiyu voln”, Sib. mat. zhurn., 59:3 (2018), 626–638 | MR | Zbl
[23] V. G. Romanov, “Zadacha ob opredelenii koeffitsienta dielektricheskoi pronitsaemosti po modulyu rasseyannogo elektromagnitnogo polya”, Sib. mat. zhurn., 58:4 (2017), 916–924 | MR | Zbl
[24] V. G. Romanov, “Opredelenie dielektricheskoi pronitsaemosti po modulyu vektora elektricheskoi napryazhennosti vysokochastotnogo elektromagnitnogo polya”, Dokl. AN, 484:3 (2019), 269–272 | Zbl
[25] V. G. Romanov, “Obratnaya besfazovaya zadacha dlya uravnenii elektrodinamiki v anizotropnoi srede”, Dokl. AN, 488:4 (2019), 367–371 | Zbl
[26] V. A. Dedok, A. L. Karchevskii, V. G. Romanov, “Chislennyi metod opredeleniya dielektricheskoi pronitsaemosti po modulyu vektora elektricheskoi napryazhennosti elektromagnitnogo polya”, Sib. zhurn. industr. matematiki, 22:3 (2019), 48–58 | MR | Zbl
[27] V. G. Romanov, “Obratnaya zadacha elektrodinamiki dlya anizotropnoi sredy. Lineinoe priblizhenie”, Zhurn. vychisl. matematiki i mat. fiziki, 60:6 (2020), 134–141
[28] V. G. Romanov, “Zadacha ob opredelenii anizotropnoi provodimosti v uravneniyakh elektrodinamiki”, Dokl. AN, 496:1 (2021), 53–55 | MR | Zbl
[29] G. Myuntts, Integralnye uravneniya, 1934, Gostekhizdat, M.–L.