An inverse problem for a nonlinear wave equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 83-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem of determining the coefficient under a nonlinear term of the equation, the main part of which is the wave operator, is considered. The properties of the solution of a direct problem are studied, in particular, the existence and uniqueness of a bounded solution in a neighborhood of a characteristic cone is established, and a structure of this solution is written out. The problem of finding an unknown coefficient is reduced to the problem of the integral geometry on a family of straight lines with a weight function that is invariant with respect to rotations around some fixed point. The uniqueness of the solution of the inverse problem is established and an algorithm of recovering the desired function is proposed.
Keywords: nonlinear wave equation, inverse problem, integral geometry. .
@article{SJIM_2022_25_2_a5,
     author = {V. G. Romanov and T. V. Bugueva},
     title = {An inverse problem for a nonlinear wave equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {83--100},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a5/}
}
TY  - JOUR
AU  - V. G. Romanov
AU  - T. V. Bugueva
TI  - An inverse problem for a nonlinear wave equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 83
EP  - 100
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a5/
LA  - ru
ID  - SJIM_2022_25_2_a5
ER  - 
%0 Journal Article
%A V. G. Romanov
%A T. V. Bugueva
%T An inverse problem for a nonlinear wave equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 83-100
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a5/
%G ru
%F SJIM_2022_25_2_a5
V. G. Romanov; T. V. Bugueva. An inverse problem for a nonlinear wave equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 83-100. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a5/

[1] M. M. Lavrentev, V. G. Romanov, “O trekh linearizovannykh obratnykh zadachakh dlya giperbolicheskikh uravnenii”, Dokl. AN SSSR, 171:6 (1966), 1279–1281 | MR

[2] M. M. Lavrentev, V. G. Romanov, V. G. Vasilev, Mnogomernye obratnye zadachi dlya differentsialnykh uravnenii, Nauka, Novosibirsk, 1969 | MR

[3] V. G. Romanov, Nekotorye obratnye zadachi dlya uravnenii giperbolicheskogo tipa, Nauka, Novosibirsk, 1972 | MR

[4] V. G. Romanov, Obratnye zadachi dlya differentsialnykh uravnenii, izd. Novosib. gos. un-ta, Novosibirsk, 1973 | MR

[5] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki, Nauka, M., 1980 | MR

[6] V. G. Romanov, “O vosstanovlenii funktsii cherez integraly po semeistvu krivykh”, Sib. mat. zhurn., 8:5 (1967), 1206–1208 | Zbl

[7] V. G. Romanov, “O vosstanovlenii funktsii cherez integraly po ellipsoidam vrascheniya, u kotorykh odin fokus nepodvizhen”, Dokl. AN SSSR, 173:5 (1967), 766–769 | Zbl

[8] R. G. Mukhometov, “Zadacha vosstanovleniya dvumernoi metriki i integralnaya geometriya”, Dokl. AN SSSR, 232:1 (1977), 32–35 | MR | Zbl

[9] V. G. Romanov, “Integralnaya geometriya na geodezicheskikh izotropnoi rimanovoi metriki”, Dokl. AN SSSR, 241:2 (1978), 290–293 | MR | Zbl

[10] R. G. Mukhometov, V. G. Romanov, “K zadache vosstanovleniya izotropnoi rimanovoi metriki v $n$-mernom prostranstve”, Dokl. AN SSSR, 243:1 (1978), 41–44 | MR | Zbl

[11] I. N. Bernshtein, M. L. Gerver, “O zadache integralnoi geometrii dlya semeistva geodezicheskikh i obratnoi kinematicheskoi zadachi seismiki”, Dokl. AN SSSR, 243:2 (1978), 302–305 | MR

[12] V. G. Romanov, Ustoichivost v obratnykh zadachakh, Nauchnyi mir, M., 2005 | MR

[13] M. V. Klibanov, V. G. Romanov, “Explicit formula for the solution of the phaseless inverse scattering problem of imaging of nano structures”, J. Inverse Ill-Posed Probl., 23:2 (2015), 187–193 | DOI | MR | Zbl

[14] M. V. Klibanov, V. G. Romanov, “Explicit solution of 3-D phaseless inverse scattering problems for the Schrodinger equation: the plane wave case”, Eurasian J. Math. Comput. Appl., 3:1 (2015), 48–63 | MR

[15] M. V. Klibanov, V. G. Romanov, “The first solution of a long standing problem: Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrodinger equation”, J. Inverse Ill-Posed Probl., 23:4 (2015), 415–428 | DOI | MR | Zbl

[16] V. G. Romanov, “Some geometric aspects in inverse problems”, Eurasian J. Math. Comput. Appl., 3:4 (2015), 68–84

[17] M. V. Klibanov, V. G. Romanov, “Two reconstruction procedures for a 3D phaseless inverse scattering problem for the generalized Helmholtz equation”, Inverse Problems, 32:2 (2016), 015005 | DOI | MR | Zbl

[18] M. V. Klibanov, V. G. Romanov, “Reconstruction procedures for two inverse scattering problem without the phase information”, SIAM J. Appl. Math., 76:1 (2015), 178–196 | DOI | MR

[19] M. V. Klibanov, V. G. Romanov, “Uniqueness of a 3-D coefficient inverse scattering problem without the phase information”, Inverse Problems, 2017, 095007 | DOI | MR | Zbl

[20] V. G. Romanov, M. Yamamoto, “Phaseless inverse problems with interference waves”, J. Inverse Ill-Posed Probl., 26:5 (2018), 681–688 | DOI | MR | Zbl

[21] V. G. Romanov, “A problem of recovering a special two-dimension potential in a hyperbolic equation”, Eurasian J. Math. Comput. Appl., 4:1 (2016), 32–46

[22] V. G. Romanov, “Obratnye zadachi bez fazovoi informatsii, ispolzuyuschie interferentsiyu voln”, Sib. mat. zhurn., 59:3 (2018), 626–638 | MR | Zbl

[23] V. G. Romanov, “Zadacha ob opredelenii koeffitsienta dielektricheskoi pronitsaemosti po modulyu rasseyannogo elektromagnitnogo polya”, Sib. mat. zhurn., 58:4 (2017), 916–924 | MR | Zbl

[24] V. G. Romanov, “Opredelenie dielektricheskoi pronitsaemosti po modulyu vektora elektricheskoi napryazhennosti vysokochastotnogo elektromagnitnogo polya”, Dokl. AN, 484:3 (2019), 269–272 | Zbl

[25] V. G. Romanov, “Obratnaya besfazovaya zadacha dlya uravnenii elektrodinamiki v anizotropnoi srede”, Dokl. AN, 488:4 (2019), 367–371 | Zbl

[26] V. A. Dedok, A. L. Karchevskii, V. G. Romanov, “Chislennyi metod opredeleniya dielektricheskoi pronitsaemosti po modulyu vektora elektricheskoi napryazhennosti elektromagnitnogo polya”, Sib. zhurn. industr. matematiki, 22:3 (2019), 48–58 | MR | Zbl

[27] V. G. Romanov, “Obratnaya zadacha elektrodinamiki dlya anizotropnoi sredy. Lineinoe priblizhenie”, Zhurn. vychisl. matematiki i mat. fiziki, 60:6 (2020), 134–141

[28] V. G. Romanov, “Zadacha ob opredelenii anizotropnoi provodimosti v uravneniyakh elektrodinamiki”, Dokl. AN, 496:1 (2021), 53–55 | MR | Zbl

[29] G. Myuntts, Integralnye uravneniya, 1934, Gostekhizdat, M.–L.