Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_2_a4, author = {A. N. Prokudin and S. V. Firsov}, title = {Elastoplastic deformations of a rotating hollow cylinder with a rigid casing under maximum reduced stress yield criterion}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {58--82}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a4/} }
TY - JOUR AU - A. N. Prokudin AU - S. V. Firsov TI - Elastoplastic deformations of a rotating hollow cylinder with a rigid casing under maximum reduced stress yield criterion JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 58 EP - 82 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a4/ LA - ru ID - SJIM_2022_25_2_a4 ER -
%0 Journal Article %A A. N. Prokudin %A S. V. Firsov %T Elastoplastic deformations of a rotating hollow cylinder with a rigid casing under maximum reduced stress yield criterion %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 58-82 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a4/ %G ru %F SJIM_2022_25_2_a4
A. N. Prokudin; S. V. Firsov. Elastoplastic deformations of a rotating hollow cylinder with a rigid casing under maximum reduced stress yield criterion. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 58-82. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a4/
[1] H. R. Zare, H. Darijani, “A novel autofrettage method for strengthening and design of thick-walled cylinders”, Materials Design, 105 (2016), 366–374 | DOI
[2] H. R. Zare, H. Darijani, “Strengthening and design of the linear hardening thick-walled cylinders using the new method of rotational autofrettage”, Int. J. Mech. Sci., 124/125 (2017), 1–8 | DOI
[3] S. M. Kamal, U. S. Dixit, A. Roy, Q. Liu, V. V. Silberschmidt, “Comparison of plane-stress, generalizedplane-strain and 3D FEM elastic?plastic analyses of thick-walled cylinders subjected to radial thermal gradient”, Int. J. Mech. Sci., 131/132 (2017), 744–752 | DOI
[4] U. Gamer, M. Sayir, “Elastic-plastic stress distribution in a rotating solid shaft”, Zeitschrift für angewandte Mathematik und Physik, 35:5 (1984), 601–617 | DOI | Zbl
[5] U. Gamer, W. Mack, I. Varga, “Rotating elastic-plastic solid shaft with fixed ends”, International J. Engrg. Sci., 35:3 (1997), 253–267 | DOI | Zbl
[6] T. Lindner, W. Mack, “Residual stresses in an elastic-plastic solid shaft with fixed ends after previous rotation”, J. Appl. Math. Mech., 78:2 (1998), 75–86 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[7] U. Gamer, R. H. Lance, “Stress distribution in a rotating elastic-plastic tube”, Acta Mechanica, 50:1/2 (1983), 1–8 | DOI | Zbl
[8] A. N. Prokudin, S. V. Firsov, “Elastoplastic deformation of a rotating hollow cylinder with a rigid casing”, PNRPU Mech. Bull., 2019, no. 4, 120–135 | DOI
[9] A. N. Prokudin, S. V. Firsov, “Uprugoplasticheskoe deformirovanie vraschayuschegosya pologo tsilindra s zhestkim pokrytiem na vnutrennei i vneshnei stenkakh”, Vestn. Inzhenernoi shkoly Dalnevostochnogo Federalnogo un-ta, 41:4 (2019), 12–28 | DOI
[10] A. N. Prokudin, “Exact elastoplastic analysis of a rotating cylinder with a rigid inclusion under mechanical loading and unloading”, J. Appl. Math. Mech., 100:3 (2020), e201900213 | DOI | MR
[11] W. Mack, “Rotating elastic-plastic tube with free ends”, Int. J. Solids and Structures, 27:11 (1991), 1461–1476 | DOI | Zbl
[12] W. Mack, “The rotating elastic-plastic solid shaft with free ends”, Technische Mechanik, 1991, no. 12, 119–124
[13] D. W. A. Rees, “Elastic-plastic stresses in rotating discs by von Mises and Tresca”, J. Appl. Math. Mech., 79:4 (1999), 281–288 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[14] A. N. Eraslan, “Von Mises' yield criterion and nonlinearly hardening variable thickness rotating annular disks with rigid inclusion”, Mech. Res. Comm., 29:5 (2002), 339–350 | DOI | Zbl
[15] A. N. Eraslan, “Stress distributions in elastic-plastic rotating disks with elliptical thickness profiles using Tresca and von Mises criteria”, J. Appl. Math. Mech., 85:4 (2005), 252–266 | DOI | MR | Zbl
[16] A. N. Eraslan, “Von Mises' yield criterion and nonlinearly hardening rotating shafts”, Acta Mech., 168:3/4 (2004), 129–144 | DOI | Zbl
[17] A. N. Eraslan, W. Mack, “A computational procedure for estimating residual stresses and secondary plastic flow limits in nonlinearly strain hardening rotating shafts”, Forschung im Ingenieurwesen, 69:2 (2005), 65–75 | DOI | MR
[18] N. Aleksandrova, “Application of Mises yield criterion to rotating solid disk problem”, Int. J. Engrg. Sci., 51 (2012), 333–337 | DOI | MR | Zbl
[19] N. Aleksandrova, “Exact deformation analysis of a solid rotating elastic?perfectly plastic disk”, Int. J. Mech. Sci., 88 (2014), 55–60 | DOI
[20] N. N. Alexandrova, S. Alexandrov, R. P. M. M. Vila, “Analysis of stress and strain in a rotating disk mounted on a rigid shaft”, Theor. Appl. Mech., 33:1 (2006), 65–90 | DOI | MR | Zbl
[21] N. Alexandrova, S. Alexandrov, P. M. M. V. Real, “Displacement field and strain distribution in a rotating annular disk”, Mechanics Based Design of Structures and Machines, 32:4 (2004), 441–457 | DOI | MR
[22] E. Lomakin, S. Alexandrov, Y. R. Jeng, “Stress and strain fields in rotating elastic/plastic annular discs”, Archive Appl. Mechanics, 86:1/2 (2016), 235–244 | DOI
[23] R. Schmidt, “Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet”, Ingenieur-Archiv, 3:3 (1932), 215–235 | DOI | Zbl
[24] A. Yu. Ishlinskii, “Gipoteza prochnosti formoizmeneniya”, Uchenye zap. MGU, 1940, no. 46, 104–114
[25] A. Yu. Ishlinskii, D. D. Ivlev, Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2003
[26] Q. Cai, M. Pang, Y. Q. Zhang, X. Liu, “Elastic-plastic stress distribution of rotating annular disc based on twin-shear stress yield criterion”, J. Zhejiang Univ. (Engrg. Sci.), 42:9 (2008), 1540–1544 | DOI
[27] A. N. Prokudin, “Elastic-plastic analysis of rotating solid shaft by maximum reduced stress yield criterion”, Vestn. Samar. Gos. Tekhn. Un-ta, Ser. Fiziko-Matematicheskie Nauki, 24:1 (2020), 74–94 | DOI | MR | Zbl
[28] A. Prokudin, “Schmidt-Ishlinskii yield criterion and a rotating cylinder with a rigid inclusion”, J. Appl. Comput. Mech., 7:2 (2021), 858–869 | DOI
[29] D. D. Ivlev, “On the development of a theory of ideal plasticity”, J. Appl. Math. Mech., 22:6 (1958), 1221–1230 | DOI | MR | Zbl
[30] P. M. Naghdi, “Stress-strain relations in plasticity and thermoplasticity”, Proc. 2 Symp. Naval Structural Mechanics (Providence, RI, 1959), Pergamon Press, 1960, 121–169 | MR
[31] M.-H. Yu, Unified Strength Theory and Its Applications, Springer-Verl, Singapore, 2018 | DOI | MR | Zbl
[32] V. A. Kolupaev, M.-H. Yu, H. Altenbach, “Fitting of the strength hypotheses”, Acta Mechanica, 227:6 (2016), 1533–1556 | DOI | MR | Zbl
[33] W. T. Koiter, “Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface”, Quarterly Appl. Math., 11:3 (1953), 350–354 | DOI | MR | Zbl
[34] C. D. Wilson, “A critical reexamination of classical metal plasticity”, J. Appl. Mechanics, Transactions, 69:1 (2002), 63–68 | DOI | Zbl
[35] J. Smith, W. K. Liu, J. Cao, “A general anisotropic yield criterion for pressure-dependent materials”, Int. J. Plasticity, 75 (2015), 2–21 | DOI