Elastoplastic deformations of a rotating hollow cylinder with a rigid casing under maximum reduced stress yield criterion
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 58-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Deformation of a hollow cylinder with fixed ends and rigid casing due to centrifugal forces arising from its rotation around the central axis is investigated. This problem is solved in the frame of the classical theory of small strain. Stresses are associated with elastic strains by Hooke's law. The maximum reduced stress yield criterion in conjunction with its associated flow rule is used to describe plastic behavior. Both loading (with increasing angular velocity) and unloading (with decreasing angular velocity) stages are studied. The closed-formed solutions for all stages of deformation including secondary plastic flow are obtained. The results are illustrated by the distributions of the stresses and plastic strains in a cylinder at different values of the angular velocity. Dependence between the angular velocities at loading and unloading stages at which plastic flows appear is discovered.
Keywords: elastoplasticity, rotating cylinder, hollow cylinder with rigid casing, secondary plastic flow, maximum reduced stress yield criterion.
@article{SJIM_2022_25_2_a4,
     author = {A. N. Prokudin and S. V. Firsov},
     title = {Elastoplastic deformations of a rotating hollow cylinder with a rigid casing under maximum reduced stress yield criterion},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {58--82},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a4/}
}
TY  - JOUR
AU  - A. N. Prokudin
AU  - S. V. Firsov
TI  - Elastoplastic deformations of a rotating hollow cylinder with a rigid casing under maximum reduced stress yield criterion
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 58
EP  - 82
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a4/
LA  - ru
ID  - SJIM_2022_25_2_a4
ER  - 
%0 Journal Article
%A A. N. Prokudin
%A S. V. Firsov
%T Elastoplastic deformations of a rotating hollow cylinder with a rigid casing under maximum reduced stress yield criterion
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 58-82
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a4/
%G ru
%F SJIM_2022_25_2_a4
A. N. Prokudin; S. V. Firsov. Elastoplastic deformations of a rotating hollow cylinder with a rigid casing under maximum reduced stress yield criterion. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 58-82. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a4/

[1] H. R. Zare, H. Darijani, “A novel autofrettage method for strengthening and design of thick-walled cylinders”, Materials Design, 105 (2016), 366–374 | DOI

[2] H. R. Zare, H. Darijani, “Strengthening and design of the linear hardening thick-walled cylinders using the new method of rotational autofrettage”, Int. J. Mech. Sci., 124/125 (2017), 1–8 | DOI

[3] S. M. Kamal, U. S. Dixit, A. Roy, Q. Liu, V. V. Silberschmidt, “Comparison of plane-stress, generalizedplane-strain and 3D FEM elastic?plastic analyses of thick-walled cylinders subjected to radial thermal gradient”, Int. J. Mech. Sci., 131/132 (2017), 744–752 | DOI

[4] U. Gamer, M. Sayir, “Elastic-plastic stress distribution in a rotating solid shaft”, Zeitschrift für angewandte Mathematik und Physik, 35:5 (1984), 601–617 | DOI | Zbl

[5] U. Gamer, W. Mack, I. Varga, “Rotating elastic-plastic solid shaft with fixed ends”, International J. Engrg. Sci., 35:3 (1997), 253–267 | DOI | Zbl

[6] T. Lindner, W. Mack, “Residual stresses in an elastic-plastic solid shaft with fixed ends after previous rotation”, J. Appl. Math. Mech., 78:2 (1998), 75–86 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[7] U. Gamer, R. H. Lance, “Stress distribution in a rotating elastic-plastic tube”, Acta Mechanica, 50:1/2 (1983), 1–8 | DOI | Zbl

[8] A. N. Prokudin, S. V. Firsov, “Elastoplastic deformation of a rotating hollow cylinder with a rigid casing”, PNRPU Mech. Bull., 2019, no. 4, 120–135 | DOI

[9] A. N. Prokudin, S. V. Firsov, “Uprugoplasticheskoe deformirovanie vraschayuschegosya pologo tsilindra s zhestkim pokrytiem na vnutrennei i vneshnei stenkakh”, Vestn. Inzhenernoi shkoly Dalnevostochnogo Federalnogo un-ta, 41:4 (2019), 12–28 | DOI

[10] A. N. Prokudin, “Exact elastoplastic analysis of a rotating cylinder with a rigid inclusion under mechanical loading and unloading”, J. Appl. Math. Mech., 100:3 (2020), e201900213 | DOI | MR

[11] W. Mack, “Rotating elastic-plastic tube with free ends”, Int. J. Solids and Structures, 27:11 (1991), 1461–1476 | DOI | Zbl

[12] W. Mack, “The rotating elastic-plastic solid shaft with free ends”, Technische Mechanik, 1991, no. 12, 119–124

[13] D. W. A. Rees, “Elastic-plastic stresses in rotating discs by von Mises and Tresca”, J. Appl. Math. Mech., 79:4 (1999), 281–288 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[14] A. N. Eraslan, “Von Mises' yield criterion and nonlinearly hardening variable thickness rotating annular disks with rigid inclusion”, Mech. Res. Comm., 29:5 (2002), 339–350 | DOI | Zbl

[15] A. N. Eraslan, “Stress distributions in elastic-plastic rotating disks with elliptical thickness profiles using Tresca and von Mises criteria”, J. Appl. Math. Mech., 85:4 (2005), 252–266 | DOI | MR | Zbl

[16] A. N. Eraslan, “Von Mises' yield criterion and nonlinearly hardening rotating shafts”, Acta Mech., 168:3/4 (2004), 129–144 | DOI | Zbl

[17] A. N. Eraslan, W. Mack, “A computational procedure for estimating residual stresses and secondary plastic flow limits in nonlinearly strain hardening rotating shafts”, Forschung im Ingenieurwesen, 69:2 (2005), 65–75 | DOI | MR

[18] N. Aleksandrova, “Application of Mises yield criterion to rotating solid disk problem”, Int. J. Engrg. Sci., 51 (2012), 333–337 | DOI | MR | Zbl

[19] N. Aleksandrova, “Exact deformation analysis of a solid rotating elastic?perfectly plastic disk”, Int. J. Mech. Sci., 88 (2014), 55–60 | DOI

[20] N. N. Alexandrova, S. Alexandrov, R. P. M. M. Vila, “Analysis of stress and strain in a rotating disk mounted on a rigid shaft”, Theor. Appl. Mech., 33:1 (2006), 65–90 | DOI | MR | Zbl

[21] N. Alexandrova, S. Alexandrov, P. M. M. V. Real, “Displacement field and strain distribution in a rotating annular disk”, Mechanics Based Design of Structures and Machines, 32:4 (2004), 441–457 | DOI | MR

[22] E. Lomakin, S. Alexandrov, Y. R. Jeng, “Stress and strain fields in rotating elastic/plastic annular discs”, Archive Appl. Mechanics, 86:1/2 (2016), 235–244 | DOI

[23] R. Schmidt, “Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet”, Ingenieur-Archiv, 3:3 (1932), 215–235 | DOI | Zbl

[24] A. Yu. Ishlinskii, “Gipoteza prochnosti formoizmeneniya”, Uchenye zap. MGU, 1940, no. 46, 104–114

[25] A. Yu. Ishlinskii, D. D. Ivlev, Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2003

[26] Q. Cai, M. Pang, Y. Q. Zhang, X. Liu, “Elastic-plastic stress distribution of rotating annular disc based on twin-shear stress yield criterion”, J. Zhejiang Univ. (Engrg. Sci.), 42:9 (2008), 1540–1544 | DOI

[27] A. N. Prokudin, “Elastic-plastic analysis of rotating solid shaft by maximum reduced stress yield criterion”, Vestn. Samar. Gos. Tekhn. Un-ta, Ser. Fiziko-Matematicheskie Nauki, 24:1 (2020), 74–94 | DOI | MR | Zbl

[28] A. Prokudin, “Schmidt-Ishlinskii yield criterion and a rotating cylinder with a rigid inclusion”, J. Appl. Comput. Mech., 7:2 (2021), 858–869 | DOI

[29] D. D. Ivlev, “On the development of a theory of ideal plasticity”, J. Appl. Math. Mech., 22:6 (1958), 1221–1230 | DOI | MR | Zbl

[30] P. M. Naghdi, “Stress-strain relations in plasticity and thermoplasticity”, Proc. 2 Symp. Naval Structural Mechanics (Providence, RI, 1959), Pergamon Press, 1960, 121–169 | MR

[31] M.-H. Yu, Unified Strength Theory and Its Applications, Springer-Verl, Singapore, 2018 | DOI | MR | Zbl

[32] V. A. Kolupaev, M.-H. Yu, H. Altenbach, “Fitting of the strength hypotheses”, Acta Mechanica, 227:6 (2016), 1533–1556 | DOI | MR | Zbl

[33] W. T. Koiter, “Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface”, Quarterly Appl. Math., 11:3 (1953), 350–354 | DOI | MR | Zbl

[34] C. D. Wilson, “A critical reexamination of classical metal plasticity”, J. Appl. Mechanics, Transactions, 69:1 (2002), 63–68 | DOI | Zbl

[35] J. Smith, W. K. Liu, J. Cao, “A general anisotropic yield criterion for pressure-dependent materials”, Int. J. Plasticity, 75 (2015), 2–21 | DOI