Maximizing gross product for the macroeconomic system with consumption proportional to labor resources
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 46-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new problem of managing a macroeconomic system with a linearly homogeneous production function is considered, taking into account the balance equation. A gross income of a year is divided into an investment and a consumption, while the volume of the total consumption is proportional to labor resources. A criterion for optimal control is the total value of gross income for a given time interval. As a research apparatus, the maximum principle is applied, due to which the optimal control problem is reduced to a variational problem with a nonholonomic constraint. Its solution is expressed in terms of the quadrature of the Cauchy problem for one equation with separable variables. The values of coefficients of proportionality of consumption, tax and depreciation deductions, ensuring the non-decline of fixed assets, are found. A system with a Cobb—Douglas production function is considered as an example.
Keywords: economic model, variational problem, production function, optimal control.
@article{SJIM_2022_25_2_a3,
     author = {V. V. Naumov and I. I. Shamaev and S. V. Mestnikov and N. P. Lazarev},
     title = {Maximizing gross product for the macroeconomic system with consumption proportional to labor resources},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {46--57},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a3/}
}
TY  - JOUR
AU  - V. V. Naumov
AU  - I. I. Shamaev
AU  - S. V. Mestnikov
AU  - N. P. Lazarev
TI  - Maximizing gross product for the macroeconomic system with consumption proportional to labor resources
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 46
EP  - 57
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a3/
LA  - ru
ID  - SJIM_2022_25_2_a3
ER  - 
%0 Journal Article
%A V. V. Naumov
%A I. I. Shamaev
%A S. V. Mestnikov
%A N. P. Lazarev
%T Maximizing gross product for the macroeconomic system with consumption proportional to labor resources
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 46-57
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a3/
%G ru
%F SJIM_2022_25_2_a3
V. V. Naumov; I. I. Shamaev; S. V. Mestnikov; N. P. Lazarev. Maximizing gross product for the macroeconomic system with consumption proportional to labor resources. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 46-57. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a3/

[1] A. V. Komarova, O. V. Pavshok, “Otsenka vklada chelovecheskogo kapitala v ekonomicheskii rost regionov Rossii (na osnove modeli Menkyu Romera-Ueila)”, Vestn. Novosib. gos. un-ta. Ser. Sots. ekonom. nauki, 7:3 (2007), 191–201

[2] A. V. Koritskii, Chelovecheskii kapital kak faktor ekonomicheskogo rosta regionov Rossii, izd. Sibirsk. un-ta potreb. kooperatsii, Novosibirsk, 2010

[3] D. Romer, Advanced Macroeconomics, McGraw-Hill, N.Y., 2012

[4] E. A. Biryukova, D. A. Pletnev, V. E. Fedorov, E. S. Biryukov, “Modeli ekonomicheskogo rosta dlya rossiiskoi ekonomiki”, Vestn. Chelyabinsk. gos. un-ta, 2018, no. 12 (422), 19–32

[5] D. Acemogly, Introduction to Modern Economic Growth, Princeton Univ. Press, Princeton, 2008

[6] R. Dzh. Barro, Kh. Sala-i Martin, Ekonomicheskii rost, BINOM; Laboratoriya znanii, M., 2010

[7] L. E. Elsgolts, Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969