Constructing a minimal basis of invariants for differential algebra
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 21-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

A basis of invariants is constructed for a set of second-order matrices consisting of the original matrix and its derivatives. It is shown that the presence of a derivative imposes connections on the elements of this set and reduces the number of elements of the basis, compared with the purely algebraic case. Formulas for calculating algebraic invariants of such a set are proved. A generalization of Fricke's formulas is formulated in terms of traces of the product of matrices of this set.
Keywords: minimal basis of invariants, Fricke formulas, differential invariants, invariant differentiation operator.
Mots-clés : algebraic invariants, affine invariants
@article{SJIM_2022_25_2_a1,
     author = {S. A. Vasyutkin and A. P. Chupakhin},
     title = {Constructing a minimal basis of invariants for differential algebra},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {21--31},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a1/}
}
TY  - JOUR
AU  - S. A. Vasyutkin
AU  - A. P. Chupakhin
TI  - Constructing a minimal basis of invariants for differential algebra
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 21
EP  - 31
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a1/
LA  - ru
ID  - SJIM_2022_25_2_a1
ER  - 
%0 Journal Article
%A S. A. Vasyutkin
%A A. P. Chupakhin
%T Constructing a minimal basis of invariants for differential algebra
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 21-31
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a1/
%G ru
%F SJIM_2022_25_2_a1
S. A. Vasyutkin; A. P. Chupakhin. Constructing a minimal basis of invariants for differential algebra. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 21-31. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a1/

[1] H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton Univ. Press, 1939 | MR

[2] Yu. P. Razmyslov, “Tozhdestva so sledom polnykh matrichnykh algebr nad polem kharakteristiki nul”, Izv. AN SSSR. Ser. mat., 38:4 (1974), 723–756

[3] C. Procesi, “The invariant theory of n n matrices”, Adv. Math., 19:3 (1976), 306–381 | DOI | MR | Zbl

[4] P. J. Olver, Classical Invariant Theory, Cambridge Univ. Press, London, 1999 | MR | Zbl

[5] A. Tresse, “Sur les invariants differentiels des groupes continus de transformaticns”, Acta. Math., 1894, no. 18, 1–88 | DOI | MR | Zbl

[6] L. V. Ovsjannikov, Group Analysis of Differential Equations, Academic Press, N.Y., 1982 | MR

[7] P. J. Olver, Equivalence, Invariants, Symmetry, Cambridge Univ. Press, London, 1995 | MR | Zbl

[8] S. K. Godunov, E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws, Springer-Verl., Boston, 2003 | MR

[9] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979 | MR

[10] P. Lancaster, “On eigenvalues of matrices dependent on a parameter”, Numer. Math., 6 (1964), 377–387 | DOI | MR | Zbl

[11] S. A. Vasyutkin, A. P. Chupakhin, “Differentsirovanie podobnykh matrits”, Mat. zametki, 109:2 (2021), 302–306 | MR | Zbl

[12] P. J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 1993 | DOI | MR | Zbl

[13] A. P. Chupakhin, “Differential invariants: theorem of commutativity”, Comm. Nonlinear Sci. Numer. Simulation, 9 (2004), 25–33 | DOI | MR | Zbl

[14] M. V. Neschadim, A. P. Chupakhin, “Ob integrirovanii odnogo matrichnogo uravneniya Rikkati”, Sib. zhurn. industr. matematiki, 23:4 (2020), 101–113 | MR

[15] M. V. Neschadim, A. P. Chupakhin, “Metod kommutatorov dlya integrirovaniya matrichnogo uravneniya Rikkati”, Sib. zhurn. industr. matematiki, 24:1 (2021), 78–88

[16] S. K. Sibirskii, “Algebraicheskie invarianty sistemy matrits”, Sib. mat. zhurn., 9:1 (1968), 152–164 | MR | Zbl

[17] W. M. Goldman, An exposition of results of Fricke and Vogt, arXiv: math/0402103

[18] J. Peyriere, “On an Article by W. Magnus on the Fricke Characters of Free Groups”, J. Algebra, 228 (2020), 659–673 | DOI | MR