Constructing a minimal basis of invariants for differential algebra
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 21-31

Voir la notice de l'article provenant de la source Math-Net.Ru

A basis of invariants is constructed for a set of second-order matrices consisting of the original matrix and its derivatives. It is shown that the presence of a derivative imposes connections on the elements of this set and reduces the number of elements of the basis, compared with the purely algebraic case. Formulas for calculating algebraic invariants of such a set are proved. A generalization of Fricke's formulas is formulated in terms of traces of the product of matrices of this set.
Keywords: minimal basis of invariants, Fricke formulas, differential invariants, invariant differentiation operator.
Mots-clés : algebraic invariants, affine invariants
@article{SJIM_2022_25_2_a1,
     author = {S. A. Vasyutkin and A. P. Chupakhin},
     title = {Constructing a minimal basis of invariants for differential algebra},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {21--31},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a1/}
}
TY  - JOUR
AU  - S. A. Vasyutkin
AU  - A. P. Chupakhin
TI  - Constructing a minimal basis of invariants for differential algebra
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 21
EP  - 31
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a1/
LA  - ru
ID  - SJIM_2022_25_2_a1
ER  - 
%0 Journal Article
%A S. A. Vasyutkin
%A A. P. Chupakhin
%T Constructing a minimal basis of invariants for differential algebra
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 21-31
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a1/
%G ru
%F SJIM_2022_25_2_a1
S. A. Vasyutkin; A. P. Chupakhin. Constructing a minimal basis of invariants for differential algebra. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 21-31. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a1/