On the solvability of the Dirichlet problem for anisotropic parabolic equations in non-convex domains
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 131-146

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy—Dirichlet problem in non-convex domains for anisotropic parabolic equation with time-dependent exponents and gradient term is considered. We state sufficient conditions that guarantee the existence and uniqueness of a viscosity solution which is Lipschitz continuous in the space variables and Hölder continuous in time.
Keywords: boundary value problems, a priori estimates, viscosity solutions. .
Mots-clés : anisotropic equations
@article{SJIM_2022_25_1_a9,
     author = {Ar. S. Tersenov},
     title = {On the solvability of the {Dirichlet} problem for anisotropic  parabolic equations in non-convex domains},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {131--146},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a9/}
}
TY  - JOUR
AU  - Ar. S. Tersenov
TI  - On the solvability of the Dirichlet problem for anisotropic  parabolic equations in non-convex domains
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 131
EP  - 146
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a9/
LA  - ru
ID  - SJIM_2022_25_1_a9
ER  - 
%0 Journal Article
%A Ar. S. Tersenov
%T On the solvability of the Dirichlet problem for anisotropic  parabolic equations in non-convex domains
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 131-146
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a9/
%G ru
%F SJIM_2022_25_1_a9
Ar. S. Tersenov. On the solvability of the Dirichlet problem for anisotropic  parabolic equations in non-convex domains. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 131-146. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a9/