On the solvability of the Dirichlet problem for anisotropic parabolic equations in non-convex domains
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 131-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy—Dirichlet problem in non-convex domains for anisotropic parabolic equation with time-dependent exponents and gradient term is considered. We state sufficient conditions that guarantee the existence and uniqueness of a viscosity solution which is Lipschitz continuous in the space variables and Hölder continuous in time.
Keywords: boundary value problems, a priori estimates, viscosity solutions. .
Mots-clés : anisotropic equations
@article{SJIM_2022_25_1_a9,
     author = {Ar. S. Tersenov},
     title = {On the solvability of the {Dirichlet} problem for anisotropic  parabolic equations in non-convex domains},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {131--146},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a9/}
}
TY  - JOUR
AU  - Ar. S. Tersenov
TI  - On the solvability of the Dirichlet problem for anisotropic  parabolic equations in non-convex domains
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 131
EP  - 146
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a9/
LA  - ru
ID  - SJIM_2022_25_1_a9
ER  - 
%0 Journal Article
%A Ar. S. Tersenov
%T On the solvability of the Dirichlet problem for anisotropic  parabolic equations in non-convex domains
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 131-146
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a9/
%G ru
%F SJIM_2022_25_1_a9
Ar. S. Tersenov. On the solvability of the Dirichlet problem for anisotropic  parabolic equations in non-convex domains. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 131-146. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a9/

[1] E. Acerbi, G. Mingione, “Regularity results for stationary electro-rheological fluids”, Arch. Ration. Mech. Anal., 164 (2002), 213–259 | DOI | MR | Zbl

[2] S. N. Antontsev, J. F. Rodrigues, “On stationary thermo-rheological viscous flows”, Ann. Univ. Ferrara. Sez. VII Sci. Mat., 52 (2006), 19–36 | DOI | MR | Zbl

[3] K. Rajagopal, M. Ružička, “Mathematical modelling of electro-rheological fluids”, Contin. Mech. Thermodyn., 13 (2001), 59–78 | DOI | Zbl

[4] M. Ružička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer-Verl., Berlin, 2000 | MR | Zbl

[5] R. Aboulaicha, D. Meskinea, A. Souissia, “New diffusion models in image processing”, Comput. Math. Appl., 56 (2008), 874–882 | DOI | MR

[6] Y. Chen, S. Levine, M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66 (2006), 1383–1406 | DOI | MR | Zbl

[7] S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions: existence, uniqueness, localization, blow-up, Atlantis Press, Atlantis Studies in Differential Equations, 4, 2015 | MR | Zbl

[8] M. Belloni, B. Kawohl, “The pseudo-$p$ Laplace eigenvalue problem and viscosity solutions as $p\to\infty$”, ESAIM: Control Optim. Calc. Variations, 10 (2004), 28–52 | DOI | MR | Zbl

[9] I. Birindelli, F. Demengel, “Existence and regularity results for fully nonlinear operators on the model of the pseudo Pucci's operators”, J. Elliptic Parabolic Equ, 2:1–2 (2017), 171–187 | MR

[10] F. Demengel, “Lipschitz interior regularity for the viscosity and weak solutions of the pseudo $p$-Laplacian equation”, Adv. Differ. Equ., 21:3–4 (2016), 373–400 | MR | Zbl

[11] P. Juutinen, Proc. Amer. Math. Soc., 129:10 (2001), 2907–2911 | DOI | MR | Zbl

[12] Ar. S. Tersenov, “Viscosity subsolutions and supersolutions for non-uniformly and degenerate elliptic equations”, Arch. Mathematicum, 45:1 (2009), 19–35 | MR | Zbl

[13] P. Juutinen, P. Lindqvist, J. J. Manfredi, “On the equivalence of the viscosity solutions and weak solutions for a quasilinear equation”, SIAM J. Math. Anal., 33:3 (2001), 699–717 | DOI | MR | Zbl

[14] J. Siltakoski, “Equivalence of viscosity and weak solutions for a p-parabolic equation”, J. Evol. Equ., 21 (2021), 2047–2080 | DOI | MR | Zbl

[15] H. Zhan, “On Solutions of a Parabolic Equation with Nonstandard Growth Condition”, J. Function Spaces, 2020, 9397620, 10 pp. | MR | Zbl

[16] M. Bendahmane, K. H. Karlsen, “Nonlinear anisotropic elliptic and parabolic equations in $\mathbb{R}^N$ with advection and lower order terms and locally integrable data”, Potential Anal., 22 (2005), 207–227 | DOI | MR | Zbl

[17] A. Dall'Aglio, D. Giachetti, S. Segura de Leon, “Global existence for parabolic problems involving the $p$-Laplacian and a critical gradient term”, Indiana Univ. Math. J., 58:1 (2009), 1–48 | DOI | MR

[18] D. G. Figueiredo, J. Sanchez, P. Ubilla, “Quasilinear equations with dependence on the gradient”, Nonlinear Anal. Theory Meth. Appl., 71 (2009), 4862–4868 | DOI | MR | Zbl

[19] Y. Fu, N. Pan, “Existence of solutions for nonlinear parabolic problem with $p(x)$-growth”, J. Math. Anal. Appl., 362 (2010), 313–326 | DOI | MR | Zbl

[20] L. Iturriaga, S. Lorca, J. Sanchez, “Existence and multiplicity results for the $p$-Laplacian with a $p$-gradient term”, NoDEA Non-Linear Differ. Equ. Appl., 15 (2008), 729–743 | DOI | MR | Zbl

[21] J. Li, J. Yin, Y. Ke, “Existence of positive solutions for the $p$-Laplacian with $p$-gradient term”, J. Math. Anal. Appl., 383 (2011), 147–158 | DOI | MR | Zbl

[22] M. Nakao, C. Chen, “Global existence and gradient estimates for the quasilinear parabolic equations of $m$-Laplacian type with a nonlinear convection term”, J. Differ. Equ, 162 (2000), 224–250 | DOI | MR | Zbl

[23] H. Zhan, “On anisotropic parabolic equations with a nonlinear convection term depending on the spatial variable”, Adv. Differ. Equ., 27 (2019), 1–26 | MR

[24] J. Zhao, Existence and nonexistence of solutions for $u_t=\mathrm{div}(|\nabla u|^{p-2}\nabla u)+f(\nabla u, u, x, t)$, 172:1 (1993), 130–146 | MR | Zbl

[25] V. Bögelein, F. Duzaar, P. Marcellini, “Parabolic equations with $p, q$-growth”, J. Math. Pures Appl., 100:4 (2013), 535–563 | DOI | MR | Zbl

[26] Al. S. Tersenov, Ar. S. Tersenov, “On quasilinear anisotropic parabolic equations with time-dependent exponents”, Sib. Math. J., 61 (2020), 159–177 | DOI | MR | Zbl

[27] Al. S. Tersenov, Ar. S. Tersenov, “Existence results for anisotropic quasilinear parabolic equations with time-dependent exponents and gradient term”, J. Math. Anal. Appl., 480:1 (2019), 123386 | DOI | MR | Zbl

[28] M. G. Crandall, H. Ishii, P. L. Lions, “User's guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc., 27 (1992), 1–67 | DOI | MR | Zbl

[29] L. Wang, “On the regularity theory of fully nonlinear parabolic equations I”, Comm. Pure. Appl. Math., 45 (1992), 27–76 | DOI | MR | Zbl

[30] S. N. Bernshtein, Collected works, v. III, Differential equations, calculus of variations and geometry, Izdat. Akad. Nauk SSSR, M., 1960 (in Russian)

[31] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[32] V. N. Starovoitov, Al. S. Tersenov, “Singular and degenerate anisotropic parabolic equations with a nonlinear source”, Nonlinear Anal., Theory Meth. Appl., 72:6 (2010), 3009–3027 | DOI | MR | Zbl

[33] B. H. Gilding, “Hölder continuity of solutions of parabolic equations”, J. London Math. Soc., 13:1 (1976), 103–106 | DOI | MR | Zbl

[34] S. N. Kruzhkov, “Quasilinear parabolic equations and systems with two independent variables”, Topics in Modern Math, Consultant Bureau, N.Y., 1985, 217–272 | MR

[35] H. Ishii, “On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE's”, Comm. Pure Appl. Math., 42 (1989), 14–45 | DOI | MR

[36] H. Ishii, P. L. Lions, “Viscosity solutions of fully nonlinear second-order elliptic partial differential equations”, J. Differ. Equ, 83 (1990), 26–78 | DOI | MR | Zbl