Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_1_a7, author = {E. V. Pyatkina}, title = {Equilibrium of a three-layer plate with crack}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {105--120}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a7/} }
E. V. Pyatkina. Equilibrium of a three-layer plate with crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 105-120. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a7/
[1] V. V. Bolotin, Yu. N. Novichkov, Mechanics of multilayered structures, Mashinostroenie, M., 1980 (in Russian)
[2] E. Reissner, Inst. Aeron. Sci. A symposium, Preprint No 165, 1948, 21–48 | MR
[3] E. I. Grigolyuk, “Equation of three-layered shells with lightweight intermediate layer”, Bull. AN USSR. Division of Technical Sci., 1957, no. 1, 77–84 (in Russian) | Zbl
[4] E. I. Grigolyuk, P. P. Chulkov, “On the general theory of three-layer shells with a big deflection”, Dokl. Acad. Nauk SSSR, 150:5 (1963), 1012–1014
[5] E. I. Grigolyuk, G. M. Kulikov, “Generalized model of mechanics of composite material thin-shell structures”, Mech. Composite Mater., 1988, no. 4, 698–704 (in Russian)
[6] V. I. Korolev, Elasto-plastic deformation of shells, Mashinostroenie, M., 1971 (in Russian)
[7] Yu. I. Dimitrienko, “Asymptotic theory of multylayer thin plates”, Vestn. Moskov. Univ. im. Baumana, Ser. Estestv. Nauki, 2012, no. 3, 86–99 (in Russian)
[8] Yu. I. Dimitrienko, E. A. Gubareva, Yu. V. Yurin, “Variational equations of asymptotic theory of multylayer thin plates”, Vestn. Moskov. Univ. im. Baumana, Ser. Estestv. Nauki, 2015, no. 4, 67–87 (in Russian)
[9] E. I. Grigolyuk, G. M. Kulikov, “Development of the theory of elastic multilayered plates and shells”, Vestn. TSTU, 11 (2005), 439–448 (in Russian)
[10] A. R. Rzanitsyn, Built-up bars and plates, Stroiizdat, M., 1986 (in Russian)
[11] A. M. Khludnev, “On the contact of two plates, one of which contains a crack”, J. Appl. Math. Mech., 61:5 (1997), 851–862 | DOI | MR | Zbl
[12] A. M. Khludnev, V. A. Kovtunenko, Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000
[13] E. M. Rudoy, “Differentiation of energy functionals in two-dimensional elasticity theory for solids with curvilinear cracks”, J. Appl. Mech. Tech. Phys., 45:6 (2004), 843–852 | DOI | MR | Zbl
[14] A. M. Khludnev, Elasticity theory problems in nonsmooth domains, Fizmatlit, M., 2010
[15] N. P. Lazarev, “The problem of equilibrium of a Timoshenko-type plate containing a through-thickness crack”, J. Appl. Industr. Math., 14:4 (2011), 32–43 | MR | Zbl
[16] V. V. Shcherbakov, “On an optimal control problem of thin inclusions shapes in elastic bodies”, J. Appl. Industr. Math., 7:3 (2013), 435–443 | DOI | MR | Zbl
[17] E. M. Rudoy, N. A. Kazarinov, V. Yu. Slesarenko, “Numerical simulation of the equilibrium of an elastic two-layer structure with a crack”, Numer. Analys. Appl., 10:1 (2017), 63–73 | DOI | MR
[18] Y. Beneveniste, T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity”, Mech. of Materials, 33 (2001), 309–323 | DOI
[19] A. M. Khludnev, “On modelling elastic bodies with defects”, Sib. Electr. Math. Rep., 15 (2018), 153–166 | MR | Zbl
[20] I. V. Fankina, “On the equilibrium of a two-layer elastic structure with a crack”, J. Appl. Industr. Math., 13:4 (2019), 629–641 | DOI | MR | MR
[21] I. V. Fankina, “On the equilibrium problem for a two-layer structure with the upper layer covering a defect tip”, Sib. Electr. Math. Rep., 17 (2020), 141–160 | MR | Zbl
[22] E. Rudoy, “Asymptotic modelling of bonded plates by a soft thin adhesive layer”, Sib. Electr. Math. Rep., 17 (2020), 615–625 | MR | Zbl
[23] A. Furtsev, E. Rudoy, “Variational approach to modelling soft and stiff interfaces in the Kirchoff-Love theory of plates”, Int. J. Solids Structures, 202 (2020), 562–574 | DOI