Equilibrium of a three-layer plate with crack
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 105-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

An equilibrium problem of a three-layer plate which is clamped at outer edge and containes a through vertical crack is studied. The three-layer plate consists of two structural layers which are considered as anisotropic Kirchhoff—Love plates and a soft layer between them. At the crack edges in the structural layers a non-penetration condition is posed. Passage to the limit as the width of soft layer tends to zero and its reduced stiffness tends to infinity is considered. For the both problems a unique solvability is shown, variational and differentional statements are presented.
Keywords: Kirchhoff—Love plate, three-layer plate, crack with non-penetration condition. .
@article{SJIM_2022_25_1_a7,
     author = {E. V. Pyatkina},
     title = {Equilibrium of a three-layer plate with crack},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {105--120},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a7/}
}
TY  - JOUR
AU  - E. V. Pyatkina
TI  - Equilibrium of a three-layer plate with crack
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 105
EP  - 120
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a7/
LA  - ru
ID  - SJIM_2022_25_1_a7
ER  - 
%0 Journal Article
%A E. V. Pyatkina
%T Equilibrium of a three-layer plate with crack
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 105-120
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a7/
%G ru
%F SJIM_2022_25_1_a7
E. V. Pyatkina. Equilibrium of a three-layer plate with crack. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 105-120. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a7/

[1] V. V. Bolotin, Yu. N. Novichkov, Mechanics of multilayered structures, Mashinostroenie, M., 1980 (in Russian)

[2] E. Reissner, Inst. Aeron. Sci. A symposium, Preprint No 165, 1948, 21–48 | MR

[3] E. I. Grigolyuk, “Equation of three-layered shells with lightweight intermediate layer”, Bull. AN USSR. Division of Technical Sci., 1957, no. 1, 77–84 (in Russian) | Zbl

[4] E. I. Grigolyuk, P. P. Chulkov, “On the general theory of three-layer shells with a big deflection”, Dokl. Acad. Nauk SSSR, 150:5 (1963), 1012–1014

[5] E. I. Grigolyuk, G. M. Kulikov, “Generalized model of mechanics of composite material thin-shell structures”, Mech. Composite Mater., 1988, no. 4, 698–704 (in Russian)

[6] V. I. Korolev, Elasto-plastic deformation of shells, Mashinostroenie, M., 1971 (in Russian)

[7] Yu. I. Dimitrienko, “Asymptotic theory of multylayer thin plates”, Vestn. Moskov. Univ. im. Baumana, Ser. Estestv. Nauki, 2012, no. 3, 86–99 (in Russian)

[8] Yu. I. Dimitrienko, E. A. Gubareva, Yu. V. Yurin, “Variational equations of asymptotic theory of multylayer thin plates”, Vestn. Moskov. Univ. im. Baumana, Ser. Estestv. Nauki, 2015, no. 4, 67–87 (in Russian)

[9] E. I. Grigolyuk, G. M. Kulikov, “Development of the theory of elastic multilayered plates and shells”, Vestn. TSTU, 11 (2005), 439–448 (in Russian)

[10] A. R. Rzanitsyn, Built-up bars and plates, Stroiizdat, M., 1986 (in Russian)

[11] A. M. Khludnev, “On the contact of two plates, one of which contains a crack”, J. Appl. Math. Mech., 61:5 (1997), 851–862 | DOI | MR | Zbl

[12] A. M. Khludnev, V. A. Kovtunenko, Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[13] E. M. Rudoy, “Differentiation of energy functionals in two-dimensional elasticity theory for solids with curvilinear cracks”, J. Appl. Mech. Tech. Phys., 45:6 (2004), 843–852 | DOI | MR | Zbl

[14] A. M. Khludnev, Elasticity theory problems in nonsmooth domains, Fizmatlit, M., 2010

[15] N. P. Lazarev, “The problem of equilibrium of a Timoshenko-type plate containing a through-thickness crack”, J. Appl. Industr. Math., 14:4 (2011), 32–43 | MR | Zbl

[16] V. V. Shcherbakov, “On an optimal control problem of thin inclusions shapes in elastic bodies”, J. Appl. Industr. Math., 7:3 (2013), 435–443 | DOI | MR | Zbl

[17] E. M. Rudoy, N. A. Kazarinov, V. Yu. Slesarenko, “Numerical simulation of the equilibrium of an elastic two-layer structure with a crack”, Numer. Analys. Appl., 10:1 (2017), 63–73 | DOI | MR

[18] Y. Beneveniste, T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity”, Mech. of Materials, 33 (2001), 309–323 | DOI

[19] A. M. Khludnev, “On modelling elastic bodies with defects”, Sib. Electr. Math. Rep., 15 (2018), 153–166 | MR | Zbl

[20] I. V. Fankina, “On the equilibrium of a two-layer elastic structure with a crack”, J. Appl. Industr. Math., 13:4 (2019), 629–641 | DOI | MR | MR

[21] I. V. Fankina, “On the equilibrium problem for a two-layer structure with the upper layer covering a defect tip”, Sib. Electr. Math. Rep., 17 (2020), 141–160 | MR | Zbl

[22] E. Rudoy, “Asymptotic modelling of bonded plates by a soft thin adhesive layer”, Sib. Electr. Math. Rep., 17 (2020), 615–625 | MR | Zbl

[23] A. Furtsev, E. Rudoy, “Variational approach to modelling soft and stiff interfaces in the Kirchoff-Love theory of plates”, Int. J. Solids Structures, 202 (2020), 562–574 | DOI