Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_1_a6, author = {N. P. Moshkin}, title = {Unsteady flow of {Maxwell} viscoelastic fluid near a critical point}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {92--104}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a6/} }
N. P. Moshkin. Unsteady flow of Maxwell viscoelastic fluid near a critical point. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 92-104. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a6/
[1] K. Hiemenz, “Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder”, Dingler's Polytechnic J., 326 (1911), 321–410
[2] D. Kolomenskiy, H. K. Moffatt, “Similarity solutions for unsteady stagnation point flow”, J. Fluid Mech., 711 (2012), 394–410 | DOI | MR | Zbl
[3] O. A. Frolovskaya, “Unsteady self-similar viscous flow near a stagnation point”, J. Appl. Math. Mech., 57:3 (2016), 391–395 | MR | Zbl
[4] S. K. Sharma, “Flow of a visco-ellastic liquid near a stagnation point”, J. Phys. Soc. Japan, 14:10 (1959), 1421–1425 | DOI | MR
[5] N. Phan-Thien, “Plane and axi-symmetric stagnation flow of a Maxwellian fluid”, Rheol. Acta, 22 (1983), 127–130 | DOI | MR | Zbl
[6] Kayvan Sadeghya, Hadi Hajibeygib, “Seyed-Mohammad Taghavia. Stagnation-point flow of upperconvected Maxwell fluids”, Int. J. Non-Linear Mech., 41 (2006), 1242–1247 | DOI
[7] J. E. Paullet, “Analysis of stagnation point flow of an upper-convected Maxwell fluid”, Electron. J. Differ. Equ., 2017:302 (2017), 1–14 | MR
[8] S. V. Meleshko, N. P. Moshkin, V. V. Pukhnachev, “On exact analytical solutions of equations of Maxwell incompressible viscoelastic medium”, Int. J. Non-Linear. Mech., 105 (2018), 152–157 | DOI
[9] G. Astarita, G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, 1974
[10] N. P. Moshkin, V. V. Pukhnachev, Yu. D. Bozhkov, “On the unsteady, stagnation point flow of a Maxwell fluid in 2D”, Int. J. Non-Linear Mech., 116 (2019), 32–38 | DOI
[11] A. G. Petrova, V. V. Pukhnachev, O. A. Frolovskaya, “Analytical and numerical investigation of unsteady flow near a critical point”, J. Appl. Math. Mech., 80:3 (2016), 215–224 | DOI | MR | Zbl
[12] A. I. Egorov, Riccati equations, Fizmatlit, M., 2001 (in Russian)
[13] R. W. Serth, “Solution of a viscoelastic boundary layer equation by orthogonal collocation”, J. Engrg. Math., 8 (1974), 89–92 | DOI | Zbl
[14] H. Schlichting, Boundary-Layer Theory, McGraw-Hill, N.Y., 1960 | MR | Zbl