Unsteady flow of Maxwell viscoelastic fluid near a critical point
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 92-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-dimensional unsteady stagnation-point flow of viscoelastic fluids is studied assuming that the fluid obeys the upper-convected Maxwell (UCM) model. The solutions of governing equations are found in assumptions that components of extra stress tensor are polynomials of spatial variable along solid wall. A class of solutions for unsteady flow in the neighbourhood of a front or rear stagnation point on a plane boundary is considered, and a range of possible behaviour is revealed, depending on an initial stage (initial data) and on whether the pressure gradient is accelerating or decelerating function of time. The velocity and stress tensor's components profiles are obtained by numerical integration the system of nonlinear ordinary differential equation. The solutions of equations exhibit finite-time singularities depending on the initial data and the type of pressure gradient dependence on time.
Keywords: unsteady critical point flow, Maxwell viscoelastic media, upper convective derivative, blow–up solution
Mots-clés : Riccati equation. .
@article{SJIM_2022_25_1_a6,
     author = {N. P. Moshkin},
     title = {Unsteady flow of {Maxwell} viscoelastic fluid near a critical point},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {92--104},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a6/}
}
TY  - JOUR
AU  - N. P. Moshkin
TI  - Unsteady flow of Maxwell viscoelastic fluid near a critical point
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 92
EP  - 104
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a6/
LA  - ru
ID  - SJIM_2022_25_1_a6
ER  - 
%0 Journal Article
%A N. P. Moshkin
%T Unsteady flow of Maxwell viscoelastic fluid near a critical point
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 92-104
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a6/
%G ru
%F SJIM_2022_25_1_a6
N. P. Moshkin. Unsteady flow of Maxwell viscoelastic fluid near a critical point. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 92-104. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a6/

[1] K. Hiemenz, “Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder”, Dingler's Polytechnic J., 326 (1911), 321–410

[2] D. Kolomenskiy, H. K. Moffatt, “Similarity solutions for unsteady stagnation point flow”, J. Fluid Mech., 711 (2012), 394–410 | DOI | MR | Zbl

[3] O. A. Frolovskaya, “Unsteady self-similar viscous flow near a stagnation point”, J. Appl. Math. Mech., 57:3 (2016), 391–395 | MR | Zbl

[4] S. K. Sharma, “Flow of a visco-ellastic liquid near a stagnation point”, J. Phys. Soc. Japan, 14:10 (1959), 1421–1425 | DOI | MR

[5] N. Phan-Thien, “Plane and axi-symmetric stagnation flow of a Maxwellian fluid”, Rheol. Acta, 22 (1983), 127–130 | DOI | MR | Zbl

[6] Kayvan Sadeghya, Hadi Hajibeygib, “Seyed-Mohammad Taghavia. Stagnation-point flow of upperconvected Maxwell fluids”, Int. J. Non-Linear Mech., 41 (2006), 1242–1247 | DOI

[7] J. E. Paullet, “Analysis of stagnation point flow of an upper-convected Maxwell fluid”, Electron. J. Differ. Equ., 2017:302 (2017), 1–14 | MR

[8] S. V. Meleshko, N. P. Moshkin, V. V. Pukhnachev, “On exact analytical solutions of equations of Maxwell incompressible viscoelastic medium”, Int. J. Non-Linear. Mech., 105 (2018), 152–157 | DOI

[9] G. Astarita, G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, 1974

[10] N. P. Moshkin, V. V. Pukhnachev, Yu. D. Bozhkov, “On the unsteady, stagnation point flow of a Maxwell fluid in 2D”, Int. J. Non-Linear Mech., 116 (2019), 32–38 | DOI

[11] A. G. Petrova, V. V. Pukhnachev, O. A. Frolovskaya, “Analytical and numerical investigation of unsteady flow near a critical point”, J. Appl. Math. Mech., 80:3 (2016), 215–224 | DOI | MR | Zbl

[12] A. I. Egorov, Riccati equations, Fizmatlit, M., 2001 (in Russian)

[13] R. W. Serth, “Solution of a viscoelastic boundary layer equation by orthogonal collocation”, J. Engrg. Math., 8 (1974), 89–92 | DOI | Zbl

[14] H. Schlichting, Boundary-Layer Theory, McGraw-Hill, N.Y., 1960 | MR | Zbl