Localization the discontinuity lines of bottom scattering coefficient according to acoustic sounding data
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 67-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the mathematical problems of constructing sonar images of the seabed from the data of measurements of a multi-beam side-scan sonar. For the nonstationary radiative transfer equation, which describes the process of acoustic sounding in the ocean, the inverse problem is investigated, which consists in finding the discontinuity lines of the bottom scattering coefficient. A numerical algorithm for solving the inverse problem is developed and the analysis of the quality of localization the boundaries of inhomogeneities of the seabed, depending on the number of angles and the sounding range, is carried out.
Keywords: radiative transfer equation, inverse problem, bottom and volume scattering, discontinuity lines of function, multi-beam sounding. .
Mots-clés : diffuse reflection conditions
@article{SJIM_2022_25_1_a4,
     author = {{\CYRE}. {\CYRO}. Kovalenko and I. V. Prokhorov},
     title = {Localization the discontinuity lines of bottom scattering coefficient according to acoustic sounding data},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {67--79},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a4/}
}
TY  - JOUR
AU  - Е. О. Kovalenko
AU  - I. V. Prokhorov
TI  - Localization the discontinuity lines of bottom scattering coefficient according to acoustic sounding data
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 67
EP  - 79
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a4/
LA  - ru
ID  - SJIM_2022_25_1_a4
ER  - 
%0 Journal Article
%A Е. О. Kovalenko
%A I. V. Prokhorov
%T Localization the discontinuity lines of bottom scattering coefficient according to acoustic sounding data
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 67-79
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a4/
%G ru
%F SJIM_2022_25_1_a4
Е. О. Kovalenko; I. V. Prokhorov. Localization the discontinuity lines of bottom scattering coefficient according to acoustic sounding data. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 67-79. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a4/

[1] A. Ishimaru, Wave Propagation and Scattering in Random Media, Acad. Press, N.Y., 1978 | MR

[2] J. A. Turner, R. L. Weaver, “Radiative transfer of ultrasound”, J. Acoust. Soc. America, 96:6 (1994), 3654–3674 | DOI

[3] V. I. Mendus, G. A. Postnov, “On Angular Intensity Distribution of High-Frequency Ambient Dynamic Noise of the Ocean”, Akust. Zhurn., 39:6 (1993), 1107–1116 (in Russian)

[4] G. Bal, “Kinetics of scalar wave fields in random media”, Wave Motion, 43 (2005), 132–157 | DOI | MR | Zbl

[5] J. E. Quijano, L. M. Zurk, “Radiative transfer theory applied to ocean bottom modeling”, J. Acoust. Soc. America, 126:4 (2009), 1711–1723 | DOI

[6] A. V. Bogorodskii, G. V. Yakovlev, E. A. Korepin, A. K. Dolzhikov, Hydroacoustic technology for studying and developing of ocean, Gidrometeoizdat, L., 1984 (in Russian)

[7] G. Griffiths, Technology and Applications of Autonomous Underwater Vehicles, CRC Press, London, 2002

[8] Yu. V. Matvienko, V. A. Voronin, S. P. Tarasov, A. V. Sknarya, E. V. Tutynin, “The Course of Development of Hydroacoustic Technologies for Investigation of Deep-Sea Floor by Using Autonomous Uninhabited Submarines”, Podvodnye Issledovaniya i Robototekhnika, 8:2 (2009), 4–15

[9] I. V. Prokhorov, V. V. Zolotarev, I. B. Agafonov, “The problem of acoustic sounding in a fluctuating ocean”, Dal'nevost. Mat. Zhurn., 11:1 (2011), 76–87 (in Russian) | MR | Zbl

[10] I. V. Prokhorov, A. A. Sushchenko, “Studying the problem of acoustic sounding of the seabed using methods of radiative transfer theory”, Acoustic. Physics, 61:3 (2015), 368–375 | DOI

[11] I. V. Prokhorov, A. A. Sushchenko, A. Kim, “Initial boundary value problem for the radiative transfer equation with diffusion matching conditions”, J. Appl. Industr. Math., 11:1 (2017), 115–124 | DOI | MR | Zbl

[12] I. V. Prokhorov, A. A. Sushchenko, “The Cauchy problem for the radiatve transfer equation in an unbounded medium”, Dal'nevost. Mat. Zhurn., 18:1 (2018), 101–111 | MR | Zbl

[13] A. A. Amosov, “Initial-boundary value problem for the non-stationary radiative transfer equation with diffuse reflection and refraction conditions”, J. Math. Sci, 235:2 (2018), 117–137 | DOI | MR | Zbl

[14] I. V. Prokhorov, “The Cauchy problem for the radiation transfer equation with Fresnel and Lambert matching conditions”, Math. Notes, 105:1 (2019), 80–90 | DOI | MR | Zbl

[15] A. Kim, I. V. Prokhorov, “Initial-boundary value problem for a radiative transfer equation with generalized matching conditions”, Sib. Electronic Math. Reports, 16 (2019), 1036–1056 | MR | Zbl

[16] E. O. Kovalenko, A. A. Sushchenko, I. V. Prokhorov, “Processing of the information from side-scan sonar”, Proc. SPIE, 10035, 2016, 100352C | DOI

[17] E. O. Kovalenko, A. A. Sushchenko, V. A. Kan, “Focusing of sonar images as an inverse problem for radiative transfer equation”, Proc. SPIE, 10833, 2018, 108336D

[18] E. O. Kovalenko, I. V. Prokhorov, “Determination of the coefficient of bottom scattering during multi-beam sounding of the ocean”, Dal'nevost. Mat. Zhurn., 19:2 (2019), 206–222 (in Russian) | MR | Zbl

[19] E. O. Kovalenko, I. V. Prokhorov, A. A. Sushchenko, V. A. Kan, “Problem of multibeam remote sensing of sea bottom”, Proc. SPIE, 11208, 2019, 112085P

[20] E. Yu. Derevtsov, S. V. Mal'tseva, I. E. Svetov, “Determination of discontinuities of a function in a domain with refraction from its attenuated ray transform”, J. Appl. Industr. Math., 12:4 (2018), 619–641 | DOI | MR | Zbl

[21] S. V. Mal'tseva, I. E. Svetov, A. P. Polyakova, “Reconstruction of a function and its singular support in a cylinder by tomographic data”, Euras. J. Math. Computer Appl., 8:2 (2020), 86–97

[22] A. Faridani, E. L. Ritman, K. T. Smith, “Local tomography”, SIAM J. Appl. Math., 52:2 (1992), 459–484 | DOI | MR | Zbl

[23] A. Faridani, D. V. Finch, E. L. Ritman, K. T. Smith, “Local tomography. II”, SIAM J. Appl. Math., 57:4 (1997), 1095–1127 | DOI | MR | Zbl

[24] E. T. Quinto, “Singularities of the X-ray transform and limited data tomography in $R^2$ and $R^3$”, SIAM J. Math. Anal., 24 (1993), 1215–1225 | DOI | MR | Zbl

[25] E. T. Ramm, A. I. Katsevich, The Radon Transform and Local Tomography, CRC Press, Boca Raton, 1996 | MR | Zbl

[26] D. S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Transport Equation and Tomography, VSP, Boston–Utrecht, 2002 | MR | Zbl

[27] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, Poorly visible media in X-ray tomography, VSP, Boston–Utrecht, 2002 | Zbl

[28] O. V. Filonin, Small-Aspect Tomography, izd. SSC RAN, Samara, 2006 (in Russian)

[29] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, “The problem of single-beam probing of an unknown medium”, J. Appl. Industr. Math., 5:4 (2011), 500–505 | DOI | MR | Zbl

[30] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, “Algorithm of finding a body projection within an absorbing and scattering medium”, J. Inverse Ill-Posed Probl., 18:8 (2011), 885–893 | MR

[31] D. S. Anikonov, V. G. Nazarov, “Problem of two-beam tomography”, Comput. Math. Math. Phys., 52:3 (2012), 315–320 | DOI | MR | Zbl

[32] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, “An integrodifferential indicator for the problem of single beam tomography”, J. Appl. Industr. Math., 8:3 (2014), 301–306 | DOI | MR | Zbl