On the qualitative analysis of the equations of motion of a rigid body in a magnetic field
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 54-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the problem of the motion of a rigid body with a fixed point under the influence of a magnetic field generated by the Barnett—London effect, as well as potential forces, particular cases of the existence of additional quadratic integrals are presented and the qualitative analysis of the equations of motion of the body is done in one of these cases.
Keywords: rigid body, qualitative analysis, computer algebra. .
@article{SJIM_2022_25_1_a3,
     author = {V. D. Irtegov and T. N. Titorenko},
     title = {On the qualitative analysis of the equations of motion of a rigid body in a magnetic field},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {54--66},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a3/}
}
TY  - JOUR
AU  - V. D. Irtegov
AU  - T. N. Titorenko
TI  - On the qualitative analysis of the equations of motion of a rigid body in a magnetic field
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 54
EP  - 66
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a3/
LA  - ru
ID  - SJIM_2022_25_1_a3
ER  - 
%0 Journal Article
%A V. D. Irtegov
%A T. N. Titorenko
%T On the qualitative analysis of the equations of motion of a rigid body in a magnetic field
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 54-66
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a3/
%G ru
%F SJIM_2022_25_1_a3
V. D. Irtegov; T. N. Titorenko. On the qualitative analysis of the equations of motion of a rigid body in a magnetic field. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 54-66. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a3/

[1] S. J. Barnett, “Magnetization by rotation”, Phys. Rev., 6:4 (1915), 239–270 | DOI

[2] I. E. Egarmin, “On the magnetic field of a rotating superconducting body”, Aerophysics and Geocosmic Research, MFTI Publ, M., 1983, 95–96 (in Russian)

[3] C. W. F. Everitt et al, “Gravity probe B: final results of a space experiment to test general relativity”, Phys. Rev. Lett., 106:22 (2011), 221101 | DOI

[4] Yu. M. Urman, “Influence of the Barnett-London effect on the motion of a superconducting rotor in a nonuniform magnetic field”, Tech. Phys., 143:8 (1998), 885–889 | DOI

[5] G. V. Gorr, “A linear invariant relation in the problem of the motion of a gyrostat in a magnetic field”, J. Appl. Math. Mech., 61:4 (1997), 549–552 | DOI | MR | Zbl

[6] V. A. Samsonov, “On the rotation of a rigid body in a magnetic field”, Izv. Akad. Nauk SSSR. Mekhanika tverdogo tela, 1984, no. 4, 32–34 (in Russian)

[7] V. V. Kozlov, “To the problem of the rotation of a rigid body in a magnetic field”, Izv. Akad. Nauk SSSR. Mekhanika Tverdogo Tela, 1985, no. 6, 28–33 (in Russian) | Zbl

[8] A. V. Zyza, “Computer studies of polynomial solutions for gyrostat dynamics”, Computer Research and Modeling, 10:1 (2018), 7–25 | DOI | MR

[9] W. Hess, “Über die Euler'schen Bewegungsgleichungen unduber eine neue partikulare Lösung des Problems der Bewegung eines starren Körpers um einen festen Punkt”, Math. Ann., 37:2 (1890), 153–181 | DOI | MR

[10] V. Irtegov, T. Titorenko, “On linear invariant manifolds in the generalized problem of motion of a top in a magnetic field”, LNCS, 11661, Springer-Verl., 2019, 246–261 | DOI | MR | Zbl

[11] V. V. Prasolov, Polynomials, Springer-Verl, Berlin, 2004 | MR | Zbl

[12] V. D. Irtegov, T. N. Titorenko, “The invariant manifolds of systems with first integrals”, J. Appl. Math. Mech., 73:4 (2009), 385–394 | DOI | MR | MR | Zbl

[13] A. Lyapunov, The General Problem of the Stability of Motion, Taylor Francis, London, 1992 | MR | MR | Zbl