Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_1_a3, author = {V. D. Irtegov and T. N. Titorenko}, title = {On the qualitative analysis of the equations of motion of a rigid body in a magnetic field}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {54--66}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a3/} }
TY - JOUR AU - V. D. Irtegov AU - T. N. Titorenko TI - On the qualitative analysis of the equations of motion of a rigid body in a magnetic field JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 54 EP - 66 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a3/ LA - ru ID - SJIM_2022_25_1_a3 ER -
%0 Journal Article %A V. D. Irtegov %A T. N. Titorenko %T On the qualitative analysis of the equations of motion of a rigid body in a magnetic field %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 54-66 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a3/ %G ru %F SJIM_2022_25_1_a3
V. D. Irtegov; T. N. Titorenko. On the qualitative analysis of the equations of motion of a rigid body in a magnetic field. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 54-66. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a3/
[1] S. J. Barnett, “Magnetization by rotation”, Phys. Rev., 6:4 (1915), 239–270 | DOI
[2] I. E. Egarmin, “On the magnetic field of a rotating superconducting body”, Aerophysics and Geocosmic Research, MFTI Publ, M., 1983, 95–96 (in Russian)
[3] C. W. F. Everitt et al, “Gravity probe B: final results of a space experiment to test general relativity”, Phys. Rev. Lett., 106:22 (2011), 221101 | DOI
[4] Yu. M. Urman, “Influence of the Barnett-London effect on the motion of a superconducting rotor in a nonuniform magnetic field”, Tech. Phys., 143:8 (1998), 885–889 | DOI
[5] G. V. Gorr, “A linear invariant relation in the problem of the motion of a gyrostat in a magnetic field”, J. Appl. Math. Mech., 61:4 (1997), 549–552 | DOI | MR | Zbl
[6] V. A. Samsonov, “On the rotation of a rigid body in a magnetic field”, Izv. Akad. Nauk SSSR. Mekhanika tverdogo tela, 1984, no. 4, 32–34 (in Russian)
[7] V. V. Kozlov, “To the problem of the rotation of a rigid body in a magnetic field”, Izv. Akad. Nauk SSSR. Mekhanika Tverdogo Tela, 1985, no. 6, 28–33 (in Russian) | Zbl
[8] A. V. Zyza, “Computer studies of polynomial solutions for gyrostat dynamics”, Computer Research and Modeling, 10:1 (2018), 7–25 | DOI | MR
[9] W. Hess, “Über die Euler'schen Bewegungsgleichungen unduber eine neue partikulare Lösung des Problems der Bewegung eines starren Körpers um einen festen Punkt”, Math. Ann., 37:2 (1890), 153–181 | DOI | MR
[10] V. Irtegov, T. Titorenko, “On linear invariant manifolds in the generalized problem of motion of a top in a magnetic field”, LNCS, 11661, Springer-Verl., 2019, 246–261 | DOI | MR | Zbl
[11] V. V. Prasolov, Polynomials, Springer-Verl, Berlin, 2004 | MR | Zbl
[12] V. D. Irtegov, T. N. Titorenko, “The invariant manifolds of systems with first integrals”, J. Appl. Math. Mech., 73:4 (2009), 385–394 | DOI | MR | MR | Zbl
[13] A. Lyapunov, The General Problem of the Stability of Motion, Taylor Francis, London, 1992 | MR | MR | Zbl