Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_1_a2, author = {E. V. Zipunova and A. A. Kuleshov and E. B. Savenkov}, title = {Nonisothermal diffuse interface model for electrical breakdown channel}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {39--53}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a2/} }
TY - JOUR AU - E. V. Zipunova AU - A. A. Kuleshov AU - E. B. Savenkov TI - Nonisothermal diffuse interface model for electrical breakdown channel JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 39 EP - 53 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a2/ LA - ru ID - SJIM_2022_25_1_a2 ER -
%0 Journal Article %A E. V. Zipunova %A A. A. Kuleshov %A E. B. Savenkov %T Nonisothermal diffuse interface model for electrical breakdown channel %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 39-53 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a2/ %G ru %F SJIM_2022_25_1_a2
E. V. Zipunova; A. A. Kuleshov; E. B. Savenkov. Nonisothermal diffuse interface model for electrical breakdown channel. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 39-53. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a2/
[1] G. A. Vorob'ev, Yu. P. Pokholkov, Yu. D. Korolev, V. I. Merkulov, Physics of dielectrics (region of strong fields), Tomsk Polytechnic University Publ., Tomsk, 2011 (in Russian)
[2] K. C. Pitike, W. Hong, “Phase-field model for dielectric breakdown in solids”, J. Appl. Phys., 115:4 (2014), 044101-1–044101-9 | DOI
[3] D. Anderson, G. McFadden, A. Wheeler, “Diffuse-interface methods in fluid mechanics”, Annual Rev. Fluid Mech., 30 (1997), 139–165 | DOI | MR
[4] J. Kim, “Phase-field models for multi-component fluid flows”, Communications in computational physics, 12:3 (2012), 613–661 | DOI | MR | Zbl
[5] M. Ambati, T. Gerasimov, L. De Lorenzis, “A review on phase-field models of brittle fracture and a new fast hybrid formulation”, Comput. Mechanics, 55 (2015), 383–405 | DOI | MR | Zbl
[6] W. J. Boettinger, J. A. Warren, C. Beckermann, A. Karma, “Phase field simulation of solidification”, Annual Rev. Mater. Res., 32 (2002), 163–194 | DOI
[7] A. Cartalade, A. Younsi, R. R-egnier, S. Schuller, “Simulations of phase-field models for crystal growth and phase separation”, Procedia Materials Sci., 7 (2014), 72–78 | DOI
[8] H. Gomez, M. Bures, A. Moure, “A review on computational modelling of phase-transition problems”, Philos. Trans. A. Math. Phys. Eng. Sci, 377:2143 (2019), 20180203 | DOI | MR | Zbl
[9] H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. I. Tòth, G. Tegze, L. Gránásy, “Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview”, Adv. Physics, 61:6 (2012), 665–743 | DOI
[10] E. Asadi, M. A. Zaem, “A review of quantitative phase-field crystal modeling of solid-liquid structures”, J. Minerals, Metals Materials Society, 67:1 (2015), 186–201 | DOI
[11] E. V. Zipunova, E. B. Savenkov, “On the diffuse interface models for high codimension dispersed inclusions”, Preprinty Keldysh Institute of Applied Mathematics RAS, 2020, 122 | DOI
[12] E. Fried, M. E. Gurtin, “Continuum theory of thermally induced phase transitions based on an order parameter”, Physica D: Nonlinear Phenomena, 68:3–4 (1993), 326–343 | DOI | MR | Zbl
[13] M. E. Gurtin, Generalized Ginzburg-Landau And Cahn-Hilliard Equations Based On A Microforce Balance, Research Report No 94-NA-020, U. S. Army Research Office, June 1994 | DOI | MR
[14] M. E. Gurtin, D. Polignone, J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter, Report 95-NA-001, Carnegie Mellon University, 1995 | MR
[15] M. E. Gurtin, “Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance”, Phisica D: Nonlinear Phenomena, 92:3–4 (1996), 178–192 | DOI | MR | Zbl
[16] M. E. Gurtin, E. Fried, L. Anand, The mechanics and thermodynamics of continua, Cambridge Univ. Press, 2010 | MR
[17] L. D. Landau, E. M. Lifshnts, The Classical Theory of Fields, Course of Theoretical Physics Ser., 2, Butterworth–Heinemann, 1980 | MR
[18] J. Larsson, “Electromagnetics from a quasistatic perspective”, Amer. J. Phys., 75:3 (2007), 230–239 | DOI
[19] B. D. Coleman, W. Noll, “The thermodynamics of elastic materials with heat conduction and viscosity”, Arch. Ration. Mech. Anal., 13:1 (1963), 167–178 | DOI | MR | Zbl
[20] R. E. Rosensweig, “Thermodynamics of electromagnetism”: Astarita G., Thermodynamics. An Advanced Textbook for Chemical Engineers, Chap. 13, Springer-Verl, Boston, 1989 | DOI
[21] L. F.R. Espath, A. F. Sarmiento, L. Dalcin, V. M. Calo, “On the thermodynamics of the Swift-Hohenberg theory”, Continuum Mechanics and Thermodynamics, 29 (2017), 1335–1345 | DOI | MR | Zbl
[22] L. Espath, V. M. Calo, E. Fried, “Generalized Swift-Hohenberg and phase-field-crystal equations based on a second-gradient phase-field theory”, Meccanica, 55 (2020), 1853–1868 | DOI | MR
[23] J. M. Sargado, E. Keilegavlen, I. Berre, J. M. Nordbotten, “High-accuracy phase-field models for brittle fracture based on a new family of degradation functions”, J. Mechanics and Physics of Solids, 111 (2018), 458–489 | DOI | MR | Zbl
[24] C. S. Helrich, Modern Thermodynamics with Statistical Mechanics, Springer-Verl, Berlin, 2009 | Zbl