Nonisothermal diffuse interface model for electrical breakdown channel
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 39-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the derivation of the gradient (weakly nonlocal) diffuse interface model, which describes an electrical breakdown channel propagation under the application of an electric field. In contrast to earlier presented models, the derived one is nonisothermal and consists of Maxwell's equations in quasi(electro)stationary approximation, Allen—Cahn type equation which governs phase field evolution, and energy balance equation. The derivation of the model is provided based on the rational thermomechanics framework using M.Gurtin microstress and microforce theory and Coleman-Noll procedure to derive constitutive relations of the model. The derived model is thermodynamically consistent and satisfies entropy inequality in the respective form. The closed-form formulation of the model and complete set of constitutive relations are presented.
Mots-clés : diffuse interface model
Keywords: phase field, order parameter, electrical breakdown. .
@article{SJIM_2022_25_1_a2,
     author = {E. V. Zipunova and A. A. Kuleshov and E. B. Savenkov},
     title = {Nonisothermal diffuse interface model for electrical breakdown channel},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {39--53},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a2/}
}
TY  - JOUR
AU  - E. V. Zipunova
AU  - A. A. Kuleshov
AU  - E. B. Savenkov
TI  - Nonisothermal diffuse interface model for electrical breakdown channel
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 39
EP  - 53
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a2/
LA  - ru
ID  - SJIM_2022_25_1_a2
ER  - 
%0 Journal Article
%A E. V. Zipunova
%A A. A. Kuleshov
%A E. B. Savenkov
%T Nonisothermal diffuse interface model for electrical breakdown channel
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 39-53
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a2/
%G ru
%F SJIM_2022_25_1_a2
E. V. Zipunova; A. A. Kuleshov; E. B. Savenkov. Nonisothermal diffuse interface model for electrical breakdown channel. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 39-53. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a2/

[1] G. A. Vorob'ev, Yu. P. Pokholkov, Yu. D. Korolev, V. I. Merkulov, Physics of dielectrics (region of strong fields), Tomsk Polytechnic University Publ., Tomsk, 2011 (in Russian)

[2] K. C. Pitike, W. Hong, “Phase-field model for dielectric breakdown in solids”, J. Appl. Phys., 115:4 (2014), 044101-1–044101-9 | DOI

[3] D. Anderson, G. McFadden, A. Wheeler, “Diffuse-interface methods in fluid mechanics”, Annual Rev. Fluid Mech., 30 (1997), 139–165 | DOI | MR

[4] J. Kim, “Phase-field models for multi-component fluid flows”, Communications in computational physics, 12:3 (2012), 613–661 | DOI | MR | Zbl

[5] M. Ambati, T. Gerasimov, L. De Lorenzis, “A review on phase-field models of brittle fracture and a new fast hybrid formulation”, Comput. Mechanics, 55 (2015), 383–405 | DOI | MR | Zbl

[6] W. J. Boettinger, J. A. Warren, C. Beckermann, A. Karma, “Phase field simulation of solidification”, Annual Rev. Mater. Res., 32 (2002), 163–194 | DOI

[7] A. Cartalade, A. Younsi, R. R-egnier, S. Schuller, “Simulations of phase-field models for crystal growth and phase separation”, Procedia Materials Sci., 7 (2014), 72–78 | DOI

[8] H. Gomez, M. Bures, A. Moure, “A review on computational modelling of phase-transition problems”, Philos. Trans. A. Math. Phys. Eng. Sci, 377:2143 (2019), 20180203 | DOI | MR | Zbl

[9] H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. I. Tòth, G. Tegze, L. Gránásy, “Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview”, Adv. Physics, 61:6 (2012), 665–743 | DOI

[10] E. Asadi, M. A. Zaem, “A review of quantitative phase-field crystal modeling of solid-liquid structures”, J. Minerals, Metals Materials Society, 67:1 (2015), 186–201 | DOI

[11] E. V. Zipunova, E. B. Savenkov, “On the diffuse interface models for high codimension dispersed inclusions”, Preprinty Keldysh Institute of Applied Mathematics RAS, 2020, 122 | DOI

[12] E. Fried, M. E. Gurtin, “Continuum theory of thermally induced phase transitions based on an order parameter”, Physica D: Nonlinear Phenomena, 68:3–4 (1993), 326–343 | DOI | MR | Zbl

[13] M. E. Gurtin, Generalized Ginzburg-Landau And Cahn-Hilliard Equations Based On A Microforce Balance, Research Report No 94-NA-020, U. S. Army Research Office, June 1994 | DOI | MR

[14] M. E. Gurtin, D. Polignone, J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter, Report 95-NA-001, Carnegie Mellon University, 1995 | MR

[15] M. E. Gurtin, “Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance”, Phisica D: Nonlinear Phenomena, 92:3–4 (1996), 178–192 | DOI | MR | Zbl

[16] M. E. Gurtin, E. Fried, L. Anand, The mechanics and thermodynamics of continua, Cambridge Univ. Press, 2010 | MR

[17] L. D. Landau, E. M. Lifshnts, The Classical Theory of Fields, Course of Theoretical Physics Ser., 2, Butterworth–Heinemann, 1980 | MR

[18] J. Larsson, “Electromagnetics from a quasistatic perspective”, Amer. J. Phys., 75:3 (2007), 230–239 | DOI

[19] B. D. Coleman, W. Noll, “The thermodynamics of elastic materials with heat conduction and viscosity”, Arch. Ration. Mech. Anal., 13:1 (1963), 167–178 | DOI | MR | Zbl

[20] R. E. Rosensweig, “Thermodynamics of electromagnetism”: Astarita G., Thermodynamics. An Advanced Textbook for Chemical Engineers, Chap. 13, Springer-Verl, Boston, 1989 | DOI

[21] L. F.R. Espath, A. F. Sarmiento, L. Dalcin, V. M. Calo, “On the thermodynamics of the Swift-Hohenberg theory”, Continuum Mechanics and Thermodynamics, 29 (2017), 1335–1345 | DOI | MR | Zbl

[22] L. Espath, V. M. Calo, E. Fried, “Generalized Swift-Hohenberg and phase-field-crystal equations based on a second-gradient phase-field theory”, Meccanica, 55 (2020), 1853–1868 | DOI | MR

[23] J. M. Sargado, E. Keilegavlen, I. Berre, J. M. Nordbotten, “High-accuracy phase-field models for brittle fracture based on a new family of degradation functions”, J. Mechanics and Physics of Solids, 111 (2018), 458–489 | DOI | MR | Zbl

[24] C. S. Helrich, Modern Thermodynamics with Statistical Mechanics, Springer-Verl, Berlin, 2009 | Zbl