Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_1_a1, author = {D. K. Durdiev and J. Sh. Safarov}, title = {2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {14--38}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a1/} }
TY - JOUR AU - D. K. Durdiev AU - J. Sh. Safarov TI - 2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 14 EP - 38 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a1/ LA - ru ID - SJIM_2022_25_1_a1 ER -
%0 Journal Article %A D. K. Durdiev %A J. Sh. Safarov %T 2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 14-38 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a1/ %G ru %F SJIM_2022_25_1_a1
D. K. Durdiev; J. Sh. Safarov. 2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 14-38. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a1/
[1] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Analysis: Theory, Methods Applications, 22:1 (1994), 21–44 | DOI | MR | Zbl
[2] J. Janno, L. Von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Meth. Appl. Sci, 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[3] D. K. Durdiev, Zh. D. Totieva, “The problem of determining a one-dimensional kernels of the equation of viscoelasticity”, Sib. Zhurn. Industr. Matematiki, 16:2 (2013), 72–82 (in Russian) | MR | Zbl
[4] D. K. Durdiev, Zh. Sh. Safarov, “Inverse Determination Problem the one-dimensional kernel of the viscoelasticity equation in a bounded area”, Mat. zametki, 97:6 (2015), 855–867 (in Russian) | Zbl
[5] D. K. Durdiev, A. A. Rakhmonov, “Inverse problem for the system integrodifferential equations of SH-waves in viscoelastic porous environment: global solvability”, Theor. Math. Physics, 195:3 (2018), 491–506 (in Russian) | MR | Zbl
[6] D. K. Durdiev, Z. D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations”, Math. Meth. Appl. Sci., 41:17 (2018), 8019–8032 | DOI | MR | Zbl
[7] Z. D. Totieva, D. K. Durdiev, “The problem of finding the one-dimensional kernel of the thermoviscoelasticity equation”, Math. Notes, 103:1–2 (2018), 118–132 | DOI | MR | Zbl
[8] Z. S. Safarov, D. K. Durdiev, “Inverse problem for an integro-differential equation of acoustics”, Differ. Equa, 54:1 (2018), 134–142 | DOI | MR | Zbl
[9] D. K. Durdiev, Z. D. Totieva, “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type”, J. Inverse and Ill-Posed Probl., 28:1 (2020), 43–52 | DOI | MR | Zbl
[10] J. Sh. Safarov, “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics”, J. Sib. Fed. Univ. Math Phys., 11:6 (2018), 753–763 | DOI | MR | Zbl
[11] J. Sh. Safarov, “Inverse problem for an integro-differential equation with distributed initial data”, Uzb. Math. J., 2019, no. 1, 117–124 | MR
[12] U. D. Durdiev, “Obratnaya zadacha dlya sistemy uravnenii vyazkouprugosti v odnorodnykh anizotropnykh sredakh”, Sib. Zhurn. Indust. Matematiki, 22:4 (80) (2019), 26–32 (in Russian) | DOI | MR
[13] V. G. Romanov, “Inverse problems for equation with a memory”, Euras. J. Math. and Computer Appl., 2:4 (2014), 51–80 | MR
[14] V. G. Romanov, “Problem of determining the permittivity in the stationary system of Maxwell equations”, Dokl. Math., 95:3 (2017), 230–234 | DOI | MR | Zbl
[15] V. G. Romanov, “Estimates of the stability of the solution in the problem of determining kernels of the equation of viscoelasticity”, Sib. Zhurn. Industr. Matematiki, 15:1 (2012), 86–98 | Zbl
[16] V. G. Romanov, “On the determination of the coefficients in the viscoelasticity equations”, Siber. Math. J., 55:3 (2014), 503–510 | DOI | MR | Zbl
[17] V. G. Romanov, “The problem of determining the kernel in the equation viscoelasticity”, Dokl. Akad. Nauk, 446:1 (2012), 18–20 (in Russian) | Zbl
[18] D. K. Durdiev, Zh. D. Totieva, “The problem of defining a multidimensional kernels of the equation of viscoelasticit”, Vladikavkaz. Mat. Zhurn., 17:4 (2015), 18–43 (in Russian) | MR | Zbl
[19] D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zhurn. Mat. Fiziki, Analiza, Geometrii, 3:4 (2007), 411–423 (in Russian) | MR | Zbl
[20] D. K. Durdiev, A. A. Rakhmonov, “The problem of defining a two-dimensional kernel in a system of integro-differential equations of viscoelastic porous medium”, Sib. Zhurn. Industr. Matematiki, 23:2 (2020), 63–80 (in Russian)
[21] D. K. Durdiev, A. A. Rahmonov, “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Meth. Appl. Sci, 43:15 (2020), 8776–8796 | DOI | MR | Zbl
[22] M. K. Teshaev, I. I. Safarov, N. U. Kuldashov, M. R. Ishmamatov, T. R. Ruziev, “On the distribution of free waves on the surface of a viscoelastic cylindrical cavity”, J. Vibrational Engineering and Technologies, 8:4 (2020), 579–585 | DOI
[23] I. Safarov, M. Teshaev, E. Toshmatov, Z. Boltaev, F. Homidov, “Torsional vibrations of a cylindrical shell in a linear viscoelastic medium”, IOP Conf. Ser.: Materials Science and Engineering, 883:1 (2020), 012190 | DOI
[24] M. K. Teshaev, I. I. Safarov, M. Mirsaidov, “Oscillations of multilayer viscoelastic composite toroidal pipes”, J. Serbian Soc. Computational Mechanics, 13:2 (2019), 104–115 | DOI
[25] V. A. Dedok, A. L. Karchevsky, V. G. Romanov, “A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field”, J. Appl. Industr. Math., 13:3 (2019), 436–446 | DOI | MR | Zbl
[26] A. L. Karchevsky, “A frequency-domain analytical solution of Maxwell-s equations for layered anisotropic media”, Russian Geology and Geophysics, 48:8 (2007), 689–695 | DOI
[27] V. G. Romanov, A. L. Karchevsky, “Determination of permittivity and conductivity of medium in a vicinity of a well having complex profile”, Euras. J. Math. Computer Appl., 6:4 (2018), 62–72
[28] A. L. Karchevsky, “A numerical solution to a system of elasticity equations for layered anisotropic media”, Russian Geology and Geophysics, 46:3 (2005), 339–351
[29] A. L. Karchevsky, “The direct dynamical problem of seismics for horizontally stratified media”, Sib. Electron. Mat. Izv., 2005, no. 2, 23–61 | MR | Zbl
[30] A. L. Karchevsky, “Numerical solution to the one-dimensional inverse problem for an elastic system”, Dokl. Earth Sci., 375:8 (2000), 1325–1328 | Zbl
[31] A. L. Karchevsky, “Simultaneous reconstruction of permittivity and conductivity”, Inverse Ill-Posed Probl., 17:4 (2009), 387–404 | MR | Zbl
[32] E. Kurpinar, A. L. Karchevsky, “Numerical solution of the inverse problem for the elasticity system for horizontally stratified media”, Inverse Problems, 20:3 (2004), 953–976 | DOI | MR | Zbl
[33] A. L. Karchevsky, “Numerical reconstruction of medium parameters of member of thin anisotropic layers”, Inverse III-Posed Probl., 12:5 (2004), 519–534 | DOI | MR | Zbl
[34] U. D. Durdiev, “Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory”, Sib. Electron. Mat. Izv., 17 (2020), 179–189 | DOI | MR | Zbl
[35] Z. R. Bozorov, “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect”, Euras. J. Math. Computer Appl., 8:2 (2020), 4–16
[36] A. S. Blagoveshchenskii, D. A. Fedorenko, “Acoustics equations in a weakly horizontally inhomogeneous medium”, Zapiski Nauchnykh Seminarov POMI, 354, 2008, 81–99
[37] V. G. Romanov, Inverse problems of mathematical physics, Nauka, M., 1984 (in Russian) | MR