2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 14-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of determining the kernel $k(t,x)$, $t\in [0,T]$, $x\in {\Bbb R}$, entering the equation of viscoelasticity in a bounded domain with respect to $z$ with weakly horizontal homogeneity. It is assumed that this kernel weakly depends on the variable $x$ and decomposes into a power series by degrees of the small parameter $\varepsilon$. A method for finding unknown functions $k_{0}$, $k_{1}$ is constructed. The global uniquely solvability and stability theorems are obtained.
Keywords: viscoelasticity equation, inverse problem, delta-function, integral equation, Banach theorem. .
@article{SJIM_2022_25_1_a1,
     author = {D. K. Durdiev and J. Sh. Safarov},
     title = {2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {14--38},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a1/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - J. Sh. Safarov
TI  - 2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 14
EP  - 38
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a1/
LA  - ru
ID  - SJIM_2022_25_1_a1
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A J. Sh. Safarov
%T 2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 14-38
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a1/
%G ru
%F SJIM_2022_25_1_a1
D. K. Durdiev; J. Sh. Safarov. 2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 1, pp. 14-38. http://geodesic.mathdoc.fr/item/SJIM_2022_25_1_a1/

[1] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Analysis: Theory, Methods Applications, 22:1 (1994), 21–44 | DOI | MR | Zbl

[2] J. Janno, L. Von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Meth. Appl. Sci, 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[3] D. K. Durdiev, Zh. D. Totieva, “The problem of determining a one-dimensional kernels of the equation of viscoelasticity”, Sib. Zhurn. Industr. Matematiki, 16:2 (2013), 72–82 (in Russian) | MR | Zbl

[4] D. K. Durdiev, Zh. Sh. Safarov, “Inverse Determination Problem the one-dimensional kernel of the viscoelasticity equation in a bounded area”, Mat. zametki, 97:6 (2015), 855–867 (in Russian) | Zbl

[5] D. K. Durdiev, A. A. Rakhmonov, “Inverse problem for the system integrodifferential equations of SH-waves in viscoelastic porous environment: global solvability”, Theor. Math. Physics, 195:3 (2018), 491–506 (in Russian) | MR | Zbl

[6] D. K. Durdiev, Z. D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations”, Math. Meth. Appl. Sci., 41:17 (2018), 8019–8032 | DOI | MR | Zbl

[7] Z. D. Totieva, D. K. Durdiev, “The problem of finding the one-dimensional kernel of the thermoviscoelasticity equation”, Math. Notes, 103:1–2 (2018), 118–132 | DOI | MR | Zbl

[8] Z. S. Safarov, D. K. Durdiev, “Inverse problem for an integro-differential equation of acoustics”, Differ. Equa, 54:1 (2018), 134–142 | DOI | MR | Zbl

[9] D. K. Durdiev, Z. D. Totieva, “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type”, J. Inverse and Ill-Posed Probl., 28:1 (2020), 43–52 | DOI | MR | Zbl

[10] J. Sh. Safarov, “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics”, J. Sib. Fed. Univ. Math Phys., 11:6 (2018), 753–763 | DOI | MR | Zbl

[11] J. Sh. Safarov, “Inverse problem for an integro-differential equation with distributed initial data”, Uzb. Math. J., 2019, no. 1, 117–124 | MR

[12] U. D. Durdiev, “Obratnaya zadacha dlya sistemy uravnenii vyazkouprugosti v odnorodnykh anizotropnykh sredakh”, Sib. Zhurn. Indust. Matematiki, 22:4 (80) (2019), 26–32 (in Russian) | DOI | MR

[13] V. G. Romanov, “Inverse problems for equation with a memory”, Euras. J. Math. and Computer Appl., 2:4 (2014), 51–80 | MR

[14] V. G. Romanov, “Problem of determining the permittivity in the stationary system of Maxwell equations”, Dokl. Math., 95:3 (2017), 230–234 | DOI | MR | Zbl

[15] V. G. Romanov, “Estimates of the stability of the solution in the problem of determining kernels of the equation of viscoelasticity”, Sib. Zhurn. Industr. Matematiki, 15:1 (2012), 86–98 | Zbl

[16] V. G. Romanov, “On the determination of the coefficients in the viscoelasticity equations”, Siber. Math. J., 55:3 (2014), 503–510 | DOI | MR | Zbl

[17] V. G. Romanov, “The problem of determining the kernel in the equation viscoelasticity”, Dokl. Akad. Nauk, 446:1 (2012), 18–20 (in Russian) | Zbl

[18] D. K. Durdiev, Zh. D. Totieva, “The problem of defining a multidimensional kernels of the equation of viscoelasticit”, Vladikavkaz. Mat. Zhurn., 17:4 (2015), 18–43 (in Russian) | MR | Zbl

[19] D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zhurn. Mat. Fiziki, Analiza, Geometrii, 3:4 (2007), 411–423 (in Russian) | MR | Zbl

[20] D. K. Durdiev, A. A. Rakhmonov, “The problem of defining a two-dimensional kernel in a system of integro-differential equations of viscoelastic porous medium”, Sib. Zhurn. Industr. Matematiki, 23:2 (2020), 63–80 (in Russian)

[21] D. K. Durdiev, A. A. Rahmonov, “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Meth. Appl. Sci, 43:15 (2020), 8776–8796 | DOI | MR | Zbl

[22] M. K. Teshaev, I. I. Safarov, N. U. Kuldashov, M. R. Ishmamatov, T. R. Ruziev, “On the distribution of free waves on the surface of a viscoelastic cylindrical cavity”, J. Vibrational Engineering and Technologies, 8:4 (2020), 579–585 | DOI

[23] I. Safarov, M. Teshaev, E. Toshmatov, Z. Boltaev, F. Homidov, “Torsional vibrations of a cylindrical shell in a linear viscoelastic medium”, IOP Conf. Ser.: Materials Science and Engineering, 883:1 (2020), 012190 | DOI

[24] M. K. Teshaev, I. I. Safarov, M. Mirsaidov, “Oscillations of multilayer viscoelastic composite toroidal pipes”, J. Serbian Soc. Computational Mechanics, 13:2 (2019), 104–115 | DOI

[25] V. A. Dedok, A. L. Karchevsky, V. G. Romanov, “A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field”, J. Appl. Industr. Math., 13:3 (2019), 436–446 | DOI | MR | Zbl

[26] A. L. Karchevsky, “A frequency-domain analytical solution of Maxwell-s equations for layered anisotropic media”, Russian Geology and Geophysics, 48:8 (2007), 689–695 | DOI

[27] V. G. Romanov, A. L. Karchevsky, “Determination of permittivity and conductivity of medium in a vicinity of a well having complex profile”, Euras. J. Math. Computer Appl., 6:4 (2018), 62–72

[28] A. L. Karchevsky, “A numerical solution to a system of elasticity equations for layered anisotropic media”, Russian Geology and Geophysics, 46:3 (2005), 339–351

[29] A. L. Karchevsky, “The direct dynamical problem of seismics for horizontally stratified media”, Sib. Electron. Mat. Izv., 2005, no. 2, 23–61 | MR | Zbl

[30] A. L. Karchevsky, “Numerical solution to the one-dimensional inverse problem for an elastic system”, Dokl. Earth Sci., 375:8 (2000), 1325–1328 | Zbl

[31] A. L. Karchevsky, “Simultaneous reconstruction of permittivity and conductivity”, Inverse Ill-Posed Probl., 17:4 (2009), 387–404 | MR | Zbl

[32] E. Kurpinar, A. L. Karchevsky, “Numerical solution of the inverse problem for the elasticity system for horizontally stratified media”, Inverse Problems, 20:3 (2004), 953–976 | DOI | MR | Zbl

[33] A. L. Karchevsky, “Numerical reconstruction of medium parameters of member of thin anisotropic layers”, Inverse III-Posed Probl., 12:5 (2004), 519–534 | DOI | MR | Zbl

[34] U. D. Durdiev, “Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory”, Sib. Electron. Mat. Izv., 17 (2020), 179–189 | DOI | MR | Zbl

[35] Z. R. Bozorov, “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect”, Euras. J. Math. Computer Appl., 8:2 (2020), 4–16

[36] A. S. Blagoveshchenskii, D. A. Fedorenko, “Acoustics equations in a weakly horizontally inhomogeneous medium”, Zapiski Nauchnykh Seminarov POMI, 354, 2008, 81–99

[37] V. G. Romanov, Inverse problems of mathematical physics, Nauka, M., 1984 (in Russian) | MR