Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_4_a7, author = {N. I. Sidnyaev and K. R. Kesoyan}, title = {Mathematical model of reproduction system for dynamic multifactor production-consumption balances}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {111--125}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a7/} }
TY - JOUR AU - N. I. Sidnyaev AU - K. R. Kesoyan TI - Mathematical model of reproduction system for dynamic multifactor production-consumption balances JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 111 EP - 125 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a7/ LA - ru ID - SJIM_2021_24_4_a7 ER -
%0 Journal Article %A N. I. Sidnyaev %A K. R. Kesoyan %T Mathematical model of reproduction system for dynamic multifactor production-consumption balances %J Sibirskij žurnal industrialʹnoj matematiki %D 2021 %P 111-125 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a7/ %G ru %F SJIM_2021_24_4_a7
N. I. Sidnyaev; K. R. Kesoyan. Mathematical model of reproduction system for dynamic multifactor production-consumption balances. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 111-125. http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a7/
[1] E. V. Lukin, “O roli mezhotraslevogo balansa v gosudarstvennom regulirovanii ekonomiki”, Ekonomicheskie i sotsialnye peremeny: fakty, tendentsii, prognoz, 10:3 (2017), 41–58
[2] V. V. Leontev, Mezhotraslevaya ekonomika, Ekonomika, M., 1997
[3] G. N. Okhlopkov, “Sistemnyi podkhod pri prognozirovanii valovogo regionalnogo produkta s ispolzovaniem modeli mezhotraslevogo balansa”, Regionalnaya ekonomika: teoriya i praktika, 18:8 (2020), 1602–1614
[4] V. Z. Belenkii, I. I. Arushanyan, N. A. Trofimova, B. R. Frenkin, “Poliproduktovaya dinamicheskaya mezhotraslevaya model narodnogo khozyaistva s optimiziruemym blokom vneshnei torgovli”, Ekonomika i mat. metody, 37:2 (2001), 107–115
[5] S. A. Ashmanov, Matematicheskie modeli i metody v ekonomike, Izd-vo MGU, M., 1980
[6] N. M. Svetlov, “Neparametricheskaya granitsa proizvodstvennykh vozmozhnostei v vychislimoi modeli chastichnogo ravnovesiya”, Ekonomika i mat. metody, 55:4 (2019), 104–116
[7] G. N. Okhlopkov, “Razrabotka metodiki opredeleniya znachimykh vidov ekonomicheskoi deyatelnosti regiona dlya prognozirovaniya valovogo regionalnogo produkta na osnove modeli mezhotraslevogo balansa”, Finansovaya ekonomika, 2018, no. 5, 478–480
[8] M. Intriligator, Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, Progress, M., 1975
[9] V. A. Kolemaev, Matematicheskaya ekonomika, izd. YuNITI, M., 2002
[10] D. I. Malakhov, N. P. Pilnik, S. A. Radionov, “Korrektirovka sistemy balansov v kachestve osnovy modelei obschego ekonomicheskogo ravnovesiya”, Ekonomika i mat. metody, 54:1 (2018), 92–109
[11] E. S. Kundysheva, Matematicheskoe modelirovanie v ekonomike, Dashkov i K$^\circ$, M., 2004
[12] P. Sraffa, Proizvodstvo tovarov posredstvom tovarov. Prelyudiya k kritike ekonomicheskoi teorii, izd. YuNITI, M., 1999
[13] K. Echaust, J. Malgorzata, “Implied correlation index: an application to economic sectors of commodity futures and stock markets”, Engrg. Economics, 31:1 (2020), 4–17 | DOI
[14] E. V. Shikin, A. G. Chkhartishvili, Matematicheskie metody i modeli v upravlenii, Delo, M., 2004
[15] A. G. Kovalenko, “Matematicheskaya model mezhotraslevogo balansa v usloviyakh rassredotochennogo rynka”, Ekonomika i mat. metody, 37:2 (2001), 92–107
[16] M. Ulrich, S. Walther, Option-implied information: What's the vol surface got to do with it?, Review of Derivatives Research, 23:3 (2020), 323–355 | DOI | Zbl