Mathematical model of reproduction system for dynamic multifactor production-consumption balances
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 111-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article develops theoretical knowledge of quantitative interrelations and patterns of economic development, as well as of mechanisms of economic management. Methodology and methods are proposed for creating, analysing, and applying the mathematical model of reproduction system for dynamic multifactor production-consumption balance. It is demonstrated that the mathematical model substantially broadens economic analysis opportunities and improves the quality of the economic decisions made. Intersectoral balance is presented as an economic-mathematical model which reflects, in an expanded form, the interrelations of production, distribution, consumption, and accumulation of social product, with a breakdown into economic sectors and as an integral whole of the material and cost aspects of reproduction. Intersectoral balances in kind comprise solely the most important products. In compiling an intersectoral balance, ‘net’ sector notion is used, one of a provisional sector combining the whole production of a given product, dependless of companies’ departmental affiliation and forms of ownership. The transition from real economic sectors to ‘net’ sectors requires a special transformation of real economic data, such as aggregation of sectors and exclusion of intrasectoral turnover.
Keywords: mathematical model, economy, balance, consumption, dynamics, factor, sector. .
Mots-clés : reproduction, production
@article{SJIM_2021_24_4_a7,
     author = {N. I. Sidnyaev and K. R. Kesoyan},
     title = {Mathematical model of reproduction system for dynamic multifactor production-consumption balances},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {111--125},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a7/}
}
TY  - JOUR
AU  - N. I. Sidnyaev
AU  - K. R. Kesoyan
TI  - Mathematical model of reproduction system for dynamic multifactor production-consumption balances
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 111
EP  - 125
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a7/
LA  - ru
ID  - SJIM_2021_24_4_a7
ER  - 
%0 Journal Article
%A N. I. Sidnyaev
%A K. R. Kesoyan
%T Mathematical model of reproduction system for dynamic multifactor production-consumption balances
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 111-125
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a7/
%G ru
%F SJIM_2021_24_4_a7
N. I. Sidnyaev; K. R. Kesoyan. Mathematical model of reproduction system for dynamic multifactor production-consumption balances. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 111-125. http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a7/

[1] E. V. Lukin, “O roli mezhotraslevogo balansa v gosudarstvennom regulirovanii ekonomiki”, Ekonomicheskie i sotsialnye peremeny: fakty, tendentsii, prognoz, 10:3 (2017), 41–58

[2] V. V. Leontev, Mezhotraslevaya ekonomika, Ekonomika, M., 1997

[3] G. N. Okhlopkov, “Sistemnyi podkhod pri prognozirovanii valovogo regionalnogo produkta s ispolzovaniem modeli mezhotraslevogo balansa”, Regionalnaya ekonomika: teoriya i praktika, 18:8 (2020), 1602–1614

[4] V. Z. Belenkii, I. I. Arushanyan, N. A. Trofimova, B. R. Frenkin, “Poliproduktovaya dinamicheskaya mezhotraslevaya model narodnogo khozyaistva s optimiziruemym blokom vneshnei torgovli”, Ekonomika i mat. metody, 37:2 (2001), 107–115

[5] S. A. Ashmanov, Matematicheskie modeli i metody v ekonomike, Izd-vo MGU, M., 1980

[6] N. M. Svetlov, “Neparametricheskaya granitsa proizvodstvennykh vozmozhnostei v vychislimoi modeli chastichnogo ravnovesiya”, Ekonomika i mat. metody, 55:4 (2019), 104–116

[7] G. N. Okhlopkov, “Razrabotka metodiki opredeleniya znachimykh vidov ekonomicheskoi deyatelnosti regiona dlya prognozirovaniya valovogo regionalnogo produkta na osnove modeli mezhotraslevogo balansa”, Finansovaya ekonomika, 2018, no. 5, 478–480

[8] M. Intriligator, Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, Progress, M., 1975

[9] V. A. Kolemaev, Matematicheskaya ekonomika, izd. YuNITI, M., 2002

[10] D. I. Malakhov, N. P. Pilnik, S. A. Radionov, “Korrektirovka sistemy balansov v kachestve osnovy modelei obschego ekonomicheskogo ravnovesiya”, Ekonomika i mat. metody, 54:1 (2018), 92–109

[11] E. S. Kundysheva, Matematicheskoe modelirovanie v ekonomike, Dashkov i K$^\circ$, M., 2004

[12] P. Sraffa, Proizvodstvo tovarov posredstvom tovarov. Prelyudiya k kritike ekonomicheskoi teorii, izd. YuNITI, M., 1999

[13] K. Echaust, J. Malgorzata, “Implied correlation index: an application to economic sectors of commodity futures and stock markets”, Engrg. Economics, 31:1 (2020), 4–17 | DOI

[14] E. V. Shikin, A. G. Chkhartishvili, Matematicheskie metody i modeli v upravlenii, Delo, M., 2004

[15] A. G. Kovalenko, “Matematicheskaya model mezhotraslevogo balansa v usloviyakh rassredotochennogo rynka”, Ekonomika i mat. metody, 37:2 (2001), 92–107

[16] M. Ulrich, S. Walther, Option-implied information: What's the vol surface got to do with it?, Review of Derivatives Research, 23:3 (2020), 323–355 | DOI | Zbl