Modeling the isotropic growth of incompressible neo-Hookean material
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 97-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the analysis of the mathematical model of the volumetric growth of incompressible neo-Hookean material. Models of this kind are used in order to describe the evolution of the human brain under the action of an external load. In the paper, we show that the space of deformation fields in the homeostatic state coincides with the Möbius group of conformal transforms in $\mathbb R^3$. We prove the well-posedness of the linear boundary value problem obtained by linearizing the governing equations on the homeostatic state. We study the behavior of solutions when the time variable tends to infinity. The main conclusion is that changes in the material, caused by a temporary increase in pressure (hydrocephalus) are irreversible.
Keywords: volumetric growth, neo-Hookean material, Stokes equations, Möbius group. .
@article{SJIM_2021_24_4_a6,
     author = {P. I. Plotnikov},
     title = {Modeling the isotropic growth of incompressible {neo-Hookean} material},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {97--110},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a6/}
}
TY  - JOUR
AU  - P. I. Plotnikov
TI  - Modeling the isotropic growth of incompressible neo-Hookean material
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 97
EP  - 110
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a6/
LA  - ru
ID  - SJIM_2021_24_4_a6
ER  - 
%0 Journal Article
%A P. I. Plotnikov
%T Modeling the isotropic growth of incompressible neo-Hookean material
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 97-110
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a6/
%G ru
%F SJIM_2021_24_4_a6
P. I. Plotnikov. Modeling the isotropic growth of incompressible neo-Hookean material. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 97-110. http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a6/

[1] P. Ciarlet, Mathematical Elasticity, v. 1, Three-dimensional Elasticity, Elsevier Sci. Publ., Basel, 1988

[2] S. C. Cowin, “Tissue growth, remodeling”, Ann. Rev. Biomed. Eng., 6 (2004), 77–107 | DOI

[3] E. Rodriguez, A. Hoger, A. McCulloch, “Stress-dependent finite growth law in soft elastic tissue”, J. Biomech., 27 (1994), 455–467 | DOI

[4] R. Skalak, G. Dasgupta, M. Moss, E. Otten, P. Dullemeijer, H. Vilmann, “Analytical description of growth”, J. Theor. Biol., 94 (1982), 555–577 | DOI

[5] M. Epstein, G. A. Maugin, “Thermomechanics of volumetric growth in uniform bodies”, Int. J. Plasticity, 16 (2000), 951–978 | DOI | Zbl

[6] P. Ciarletta, D. Ambrosi, G. A. Maugin, “Mass transport in morphogenetic processes: a second gradient theory for volumetric growth and material remodeling”, J. Mech. Phys. Solids, 60 (2012), 432–450 | DOI | Zbl

[7] Yu. G. Reshetnyak, Stability Theorems in Geometry and Analysis, Kluwer, Dordrecht, 1994 | Zbl

[8] L. Alfors, Preobrazovaniya Mebiusa v mnogomernom prostranstve, Mir, M., 1981

[9] L. M. Eizenkhart, Rimanova geometriya, Izd-vo inostr. lit., 1948

[10] Yu. G. Reshetnyak, “Otsenki dlya nekotorykh differentsialnykh operatorov s konechnomernym yadrom”, Sib. mat. zhurn., 11:2 (1970), 414–428 | Zbl

[11] P. I. Plotnikov, “Obemnyi rost neszhimaemogo materiala neo-Guka”, Sib. elektron. mat. izvestiya, 17 (2020), 1990–2027 | Zbl