Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_4_a6, author = {P. I. Plotnikov}, title = {Modeling the isotropic growth of incompressible {neo-Hookean} material}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {97--110}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a6/} }
P. I. Plotnikov. Modeling the isotropic growth of incompressible neo-Hookean material. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 97-110. http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a6/
[1] P. Ciarlet, Mathematical Elasticity, v. 1, Three-dimensional Elasticity, Elsevier Sci. Publ., Basel, 1988
[2] S. C. Cowin, “Tissue growth, remodeling”, Ann. Rev. Biomed. Eng., 6 (2004), 77–107 | DOI
[3] E. Rodriguez, A. Hoger, A. McCulloch, “Stress-dependent finite growth law in soft elastic tissue”, J. Biomech., 27 (1994), 455–467 | DOI
[4] R. Skalak, G. Dasgupta, M. Moss, E. Otten, P. Dullemeijer, H. Vilmann, “Analytical description of growth”, J. Theor. Biol., 94 (1982), 555–577 | DOI
[5] M. Epstein, G. A. Maugin, “Thermomechanics of volumetric growth in uniform bodies”, Int. J. Plasticity, 16 (2000), 951–978 | DOI | Zbl
[6] P. Ciarletta, D. Ambrosi, G. A. Maugin, “Mass transport in morphogenetic processes: a second gradient theory for volumetric growth and material remodeling”, J. Mech. Phys. Solids, 60 (2012), 432–450 | DOI | Zbl
[7] Yu. G. Reshetnyak, Stability Theorems in Geometry and Analysis, Kluwer, Dordrecht, 1994 | Zbl
[8] L. Alfors, Preobrazovaniya Mebiusa v mnogomernom prostranstve, Mir, M., 1981
[9] L. M. Eizenkhart, Rimanova geometriya, Izd-vo inostr. lit., 1948
[10] Yu. G. Reshetnyak, “Otsenki dlya nekotorykh differentsialnykh operatorov s konechnomernym yadrom”, Sib. mat. zhurn., 11:2 (1970), 414–428 | Zbl
[11] P. I. Plotnikov, “Obemnyi rost neszhimaemogo materiala neo-Guka”, Sib. elektron. mat. izvestiya, 17 (2020), 1990–2027 | Zbl