Generalized derivative and its use for analysis of the microstructure of a heterogeneous medium
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 79-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analytical account of the influence of the heterogeneous medium internal boundaries on the propagation of an elastic stress field through it is carried out. The introduced mathematical concept aimed at displaying the microstructure of a heterogeneous system is a derivative in a generalized sense. Based on the formalism of the generalized derivative, the operator is modified in the used initial model of the linear theory of elasticity. Green's function (built on the transformed operator) displays the microstructural features of the system. To obtain the effective coefficients of elasticity included in the averaged equations and describing the elastic properties of a heterogeneous medium, the method of conditional moments is used. Carrying out operations within the framework of this approach leads to integrals containing the modified averaged Green's function and the correlation function of the geometry of the structure. Based on these terms the microstructure of the system is integrally taken into account in the final effective elasticity coefficients.
Keywords: heterogeneous medium, generalized derivative, Green's function, stochastic model, averaging. .
Mots-clés : microstructure
@article{SJIM_2021_24_4_a5,
     author = {A. V. Mishin},
     title = {Generalized derivative and its use for analysis of the microstructure of a heterogeneous medium},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {79--96},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a5/}
}
TY  - JOUR
AU  - A. V. Mishin
TI  - Generalized derivative and its use for analysis of the microstructure of a heterogeneous medium
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 79
EP  - 96
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a5/
LA  - ru
ID  - SJIM_2021_24_4_a5
ER  - 
%0 Journal Article
%A A. V. Mishin
%T Generalized derivative and its use for analysis of the microstructure of a heterogeneous medium
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 79-96
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a5/
%G ru
%F SJIM_2021_24_4_a5
A. V. Mishin. Generalized derivative and its use for analysis of the microstructure of a heterogeneous medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 79-96. http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a5/

[1] L. P. Khoroshun, “A new mathematical model of the nonuniform deformation of composites”, Mekh. Kompos. Mater., 31:3 (1995), 310–318

[2] L. P. Khoroshun, “Mathematical models and methods of the mechanics of stochastic composites”, Appl. Mechanics, 30:10 (2000), 30–62 | Zbl

[3] Z. Hashin, S. Shtrikman, “On some variational principles in anisotropic and nonhomogeneous elasticity”, J. Mech. Phys. Solids, 10:4 (1962), 335–342 | DOI

[4] Z. Hashin, S. Shtrikman, “A variational approach to the theory of the elastic behavior of multiphase materials”, J. Mech. Phys. Solids, 11:2 (1963), 127–140 | DOI | Zbl

[5] Z. Hashin, S. Shtrikman, “Conductivity of polycrystals”, Phys. Rev., 130:129 (1963), 129–133 | DOI

[6] T. D. Shermergor, Teoriya uprugosti mikroneodnorodnykh sred, Nauka, M., 1977

[7] D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. II. Dielektrizit-atskonstanten und Leitf-ahigkeiten von Vielrkistallen der nichtregularen Systeme”, Ann. Phys., 417:25 (1936), 645–672 | DOI

[8] E. Kroner, “Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls”, Z. Phys., 151:4 (1958), 504–518 | DOI

[9] R. A. Hill, “Self-consistent mechanics of composite materials”, J. Mech. Phys. Solids, 13:4 (1965), 213–222 | DOI

[10] R. M. Christensen, Theory of Viscoelasticity, Acad. Press, N.Y., 1982

[11] L. P. Khoroshun, “Random functions theory in problems on the macroscopic characteristics of microinhomogeneous media”, Appl. Mechanics, 14 (1978), 3–17 | Zbl

[12] L. P. Khoroshun, “Conditional-moment method in problems of the mechanics of composite materials”, Appl. Mechanics, 23:10 (1987), 100–108 | Zbl

[13] V. V. Bolotin, V. N. Moskalenko, “Determination of the elastic constants of a micro inhomogeneous medium”, Zh. Prikl. Mekh. Tekhn. Fiz., 34:1 (1968), 66–72

[14] R. I. Nigmatullin, Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978

[15] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984

[16] T. Mori, K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions”, Acta Metall., 21 (1973), 571–574 | DOI

[17] P. P. Castaneda, J. R. Willis, “The effect of spatial distribution on the effective behavior of composite materials and cracked media”, J. Mech. Phys. Solids, 43 (1995), 1919–1951 | DOI | Zbl

[18] A. Fedotov, “The hybrid homogenization model of elastic anisotropic porous materials”, J. Mater. Sci., 53 (2018), 5092–5102 | DOI

[19] L. Shvarts, Matematicheskie metody dlya fizicheskikh nauk, Mir, M., 1965

[20] L. P. Khoroshun, “Elastic properties of materials reinforced with unidirectional short fibers”, Appl. Mechanics, 8:10 (1972), 1–7

[21] J. C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, 1873

[22] L. Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium”, Phil. Mag., 34 (1892), 481 | DOI