Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_4_a5, author = {A. V. Mishin}, title = {Generalized derivative and its use for analysis of the microstructure of a heterogeneous medium}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {79--96}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a5/} }
TY - JOUR AU - A. V. Mishin TI - Generalized derivative and its use for analysis of the microstructure of a heterogeneous medium JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 79 EP - 96 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a5/ LA - ru ID - SJIM_2021_24_4_a5 ER -
A. V. Mishin. Generalized derivative and its use for analysis of the microstructure of a heterogeneous medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 79-96. http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a5/
[1] L. P. Khoroshun, “A new mathematical model of the nonuniform deformation of composites”, Mekh. Kompos. Mater., 31:3 (1995), 310–318
[2] L. P. Khoroshun, “Mathematical models and methods of the mechanics of stochastic composites”, Appl. Mechanics, 30:10 (2000), 30–62 | Zbl
[3] Z. Hashin, S. Shtrikman, “On some variational principles in anisotropic and nonhomogeneous elasticity”, J. Mech. Phys. Solids, 10:4 (1962), 335–342 | DOI
[4] Z. Hashin, S. Shtrikman, “A variational approach to the theory of the elastic behavior of multiphase materials”, J. Mech. Phys. Solids, 11:2 (1963), 127–140 | DOI | Zbl
[5] Z. Hashin, S. Shtrikman, “Conductivity of polycrystals”, Phys. Rev., 130:129 (1963), 129–133 | DOI
[6] T. D. Shermergor, Teoriya uprugosti mikroneodnorodnykh sred, Nauka, M., 1977
[7] D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. II. Dielektrizit-atskonstanten und Leitf-ahigkeiten von Vielrkistallen der nichtregularen Systeme”, Ann. Phys., 417:25 (1936), 645–672 | DOI
[8] E. Kroner, “Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls”, Z. Phys., 151:4 (1958), 504–518 | DOI
[9] R. A. Hill, “Self-consistent mechanics of composite materials”, J. Mech. Phys. Solids, 13:4 (1965), 213–222 | DOI
[10] R. M. Christensen, Theory of Viscoelasticity, Acad. Press, N.Y., 1982
[11] L. P. Khoroshun, “Random functions theory in problems on the macroscopic characteristics of microinhomogeneous media”, Appl. Mechanics, 14 (1978), 3–17 | Zbl
[12] L. P. Khoroshun, “Conditional-moment method in problems of the mechanics of composite materials”, Appl. Mechanics, 23:10 (1987), 100–108 | Zbl
[13] V. V. Bolotin, V. N. Moskalenko, “Determination of the elastic constants of a micro inhomogeneous medium”, Zh. Prikl. Mekh. Tekhn. Fiz., 34:1 (1968), 66–72
[14] R. I. Nigmatullin, Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978
[15] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984
[16] T. Mori, K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions”, Acta Metall., 21 (1973), 571–574 | DOI
[17] P. P. Castaneda, J. R. Willis, “The effect of spatial distribution on the effective behavior of composite materials and cracked media”, J. Mech. Phys. Solids, 43 (1995), 1919–1951 | DOI | Zbl
[18] A. Fedotov, “The hybrid homogenization model of elastic anisotropic porous materials”, J. Mater. Sci., 53 (2018), 5092–5102 | DOI
[19] L. Shvarts, Matematicheskie metody dlya fizicheskikh nauk, Mir, M., 1965
[20] L. P. Khoroshun, “Elastic properties of materials reinforced with unidirectional short fibers”, Appl. Mechanics, 8:10 (1972), 1–7
[21] J. C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, 1873
[22] L. Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium”, Phil. Mag., 34 (1892), 481 | DOI